28 resultados para Microtubule Motor Protein
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC-domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE-1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1-depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound-healing assays. However, the major microtubule-nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization.
Resumo:
The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation. These findings combined with atomic force microscopy measurements in reciliating cells indicate that these proteins play a role during cilia biogenesis related to microtubule nucleation, tubulin transport, and/or axoneme assembly. The TpCCT-subunits were also found to be associated with cortex and cytoplasmic microtubules suggesting that they can act as microtubule-associated proteins. The TpCCTdelta being the only subunit found associated with the macronuclear envelope indicates that it has functions outside of the 900 kDa complex. Tetrahymena cytoplasm contains granular/globular-structures of TpCCT-subunits in close association with microtubule arrays. Studies of reciliation and with cycloheximide suggest that these structures may be sites of translation and folding. Combined biochemical techniques revealed that reciliation affects the oligomeric state of TpCCT-subunits being tubulin preferentially associated with smaller CCT oligomeric species in early stages of reciliation. Collectively, these findings indicate that the oligomeric state of CCT-subunits reflects the translation capacity of the cell and microtubules integrity.
Resumo:
Introdução: A Motor Assessment Scale (MAS) tem mostrado ser um instrumento válido e fidedigno na avaliação do progresso clínico de indivíduos que sofreram um Acidente Vascular Cerebral (AVC). Objectivos: Traduzir e adaptar a MAS à realidade portuguesa e contribuir para a validação da versão portuguesa, avaliando a sua consistência interna. Metodologia: Após um processo de tradução, revisão por peritos, retroversão e comparação com a versão original, obteve-se a versão portuguesa da MAS. Procedeu-se a um estudo correlacional transversal para avaliação da consistência interna; a amostra final incluiu 30 sujeitos, 16 do sexo masculino e 14 do sexo feminino, com idades entre os 42 e 85 anos (média de 64±11,85 anos), com hemiparésia ou hemiplegia decorrente de AVC e que realizavam fisioterapia em um de 6 Hospitais seleccionados por conveniência; a média do tempo de diagnóstico foi de 306±1322,82 dias e do tempo de fisioterapia foi de 47±57,57 dias. Resultados: Obteve-se uma média de 24±14,51 pontos nas pontuações totais e um coeficiente de Alfa de Cronbach de 0,939, sem a exclusão de qualquer item; as correlações inter item variaram entre 0,395 e 0,916. Conclusões: Apesar da reduzida amostra e da sua heterogeneidade nas características e pontuações da escala, a Versão Portuguesa da MAS apresentou uma forte consistência interna, verificando-se que os itens estão, na sua maioria, muito correlacionados entre si, o que sustenta a adequação de cada item e apoia que, de forma geral, esta escala tem uma concepção lógica e estruturada.
Resumo:
Introduction: Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease that leads to sensory and motor polyneuropathies as well as functional limitations. So far, liver transplantation is the only treatment for FAP because the mutated protein causing the disease is mainly produced in the liver. With the increasing survival of transplant recipients, functional and cardiovascular problems as consequences of immunosuppressant side effects are increasing associated with sedentary lifestyles and/or retransplantation status. We sought to analyze the impact of exercise training programs on 1 FAP patient’s course long-term after liver transplantation. Methodology. A FAP patient (female; 49 years of age; body mass index 18.8 kg/m2) underwent a liver transplantation 133 months before assessment. She was assessed for body composition, isometric quadriceps muscle strength, functional capacity, fatigue, and levels of physical activity before and after a 6-month period of combined exercise training. Results: After the exercise training program, almost all variables were improved, namely, total body skeletal muscle mass, proximal femoral bone mineral density, quadriceps strength, maximal oxygen consumption on 6 minutes walk test (6mwt) or VO2peak, total ventilation on 6mwt, and fatigue. The improvement in distance on 6mwt (69.2 m) was clinically significant. Preintervention the levels of physical activity were below international recommendations for health; after the program they achieved the recommendations. Conclusion: The results showed an improvement in functional capacity with a decrease in future disability risk associated with a better lifestyle with respect to physical activity levels in 1 patient.
Resumo:
O bom desempenho dos motores de indução trifásicos, ao nível do binário, em velocidades de funcionamento abaixo da velocidade nominal, faz deles uma boa opção para realizar o controlo de velocidade nesta gama de velocidades. Actualmente, com o rápido avanço da electrónica de potência é mais acessível a implementação de dispositivos que permitam variar a velocidade dos motores de indução trifásicos, contribuindo para que estas máquinas sejam cada vez mais utilizadas em accionamentos de velocidade variável. Este trabalho tem como objectivo o estudo prático da utilização da técnica de controlo escalar por variação simultânea da tensão e frequência (V/f) no accionamento do motor de indução trifásico. Para o efeito, foi implementado um conversor de potência compacto do tipo ondulador de tensão trifásico. Os sinais de comando para o conversor, que utilizam a modulação por largura de impulso, são gerados por um microcontrolador, que para além das capacidades normais de um dispositivo desse tipo, pemite ainda o processamento digital de sinal. O microcontrolador permite ainda a monitorização da velocidade de rotação do motor e da corrente no motor. A análise do desempenho do sistema incide essencialmente sobre o controlo da velocidade de rotação do motor, tendo sido criadas várias condições de funcionamento, com diferentes inclinações das rampas de aceleração e desaceleração.
Resumo:
Este projecto basear-se-á na descrição da exploração do universo da falha como um motor de criação. Para tal, foi tomado como ponto de partida as dificuldades inerentes à dislexia. Será também descrito de forma pormenorizada o tempo passado juntamente com a companhia Les Ballets C . de la B. Incluirá igualmente um diário de bordo com a descrição detalhada do projecto A.I.M.
Resumo:
A ressonância magnética funcional (RMf) é hoje uma ferramenta fundamental na investigação funcional do cérebro humano, quer em indivíduos saudáveis quer em pacientes com patologias diversas. É uma técnica complexa que necessita de uma aplicação cuidada e rigorosa, e uma compreensão dos mecanismos biofísicos a ela subjacentes, de modo a serem obtidos resultados fiáveis e com melhor aceitação clínica. O efeito BOLD (Blood Oxygenation Level Dependent) é o método mais utilizado para medir e estudar a actividade cerebral e baseia-se nas alterações das propriedades magnéticas da molécula hemoglobina. Com este Projecto propomo-nos optimizar um protocolo de RMf realizada com o efeito BOLD, em voluntários saudáveis, de modo a que este possa ser aplicado em futuros estudos de pacientes com patologias. ABSTRACT - Nowadays functional magnetic resonance imaging (fMRI) is a fundamental tool for the research of human brain function of healthy subjects or patients with several pathologies. It is a complex technique that requires a careful and rigorous application, and an understanding of its biophysical mechanisms, so that reliable results can be obtained with better clinical acceptance. The BOLD effect (Blood Oxygenation Level Dependent) is the most widely used method to measure and study the brain activity and its based on changes in magnetic properties of the hemoglobin molecule. The aim of this project was to optimize a BOLD fMRI protocol on healthy subjects, so it can be applied in future studies of patients with pathologies.
Resumo:
Abstract - Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules. Methodology/Principal findings: We found that the mouse genome contains two structurally distinct Tbca genes located in chromosomes 13 (Tbca13) and 16 (Tbca16). Interestingly, the two Tbca genes albeit ubiquitously expressed, present differential expression during mouse testis maturation. In fact, as testis maturation progresses Tbca13 mRNA levels increase progressively, while Tbca16 mRNA levels decrease. This suggests a regulatory mechanism between the two genes and prompted us to investigate the presence of the two proteins. However, using tandem mass spectrometry we were unable to identify the TBCA16 protein in testis extracts even in those corresponding to the maturation step with the highest levels of Tbca16 transcripts. These puzzling results led us to re-analyze the expression of Tbca16. We then detected that Tbca16 transcription produces sense and natural antisense transcripts. Strikingly, the specific depletion by RNAi of these transcripts leads to an increase of Tbca13 transcript levels in a mouse spermatocyte cell line. Conclusions/Significance: Our results demonstrate that Tbca13 mRNA levels are post-transcriptionally regulated by the sense and natural antisense Tbca16 mRNA levels. We propose that this regulatory mechanism operates during spermatogenesis, a process that involves microtubule rearrangements, the assembly of specific microtubule structures and requires critical TBCA levels.
Resumo:
Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO− present in TBCB, which is similar to the EEY/F-COO− element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE–TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.
Resumo:
A method to control the speed or the torque of a permanent-magnet direct current motor is presented. The rotor speed and the external torque estimation are simultaneously provided by appropriate observers. The sensorless control scheme is based on current measurement and switching states of power devices. The observer’s performances are dependent on the accurate machine parameters knowledge. Sliding mode control approach was adopted for drive control, providing the suitable switching states to the chopper power devices. Despite the predictable chattering, a convenient first order switching function was considered enough to define the sliding surface and to correspond with the desired control specifications and drive performance. The experimental implementation was supported on a single dsPIC and the controller includes a logic overcurrent protection.
Resumo:
The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.
Resumo:
The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: The eukaryotic release factor 3 (eRF3) has been shown to affect both tubulin and actin cytoskeleton, suggesting a role in cytoskeleton assembly, mitotic spindle formation and chromosome segregation. Also, direct interactions between eRF3 and subunits of the cytosolic chaperonin CCT have been described. Moreover, both eRF3a and CCT subunits have been described to be up-regulated in cancer tissues. Our aim was to evaluate the hypothesis that eRF3 expression levels are correlated with the expression of genes encoding proteins involved in the tubulin folding pathways. Methods: Relative expression levels of eRF1, eRF3a/GSPT1, PFDN4, CCT2, CCT4, and TBCA genes in tumour samples relative to their adjacent normal tissues were investigated using real time-polymerase chain reaction in 20 gastric cancer patients. Results: The expression levels of eRF3a/GSPT1 were not correlated with the expression levels of the other genes studied. However, significant correlations were detected between the other genes, both within intestinal and diffuse type tumours. Conclusions: eRF3a/GSPT1 expression at the mRNA level is independent from both cell translation rates and from the expression of the genes involved in tubulin-folding pathways. The differences in the patterns of expression of the genes studied support the hypothesis of genetically independent pathways in the origin of intestinal and diffuse type gastric tumours.
Resumo:
Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.