5 resultados para Microhardness tester
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Ao nível da segurança de circulação rodoviária e aeroportuária, a aderência entre os pneumáticos e a superfície do pavimento apresenta-se como uma das características superficiais mais importantes dos pavimentos em situações de piso molhado. Mundialmente, tem-se dado relevante importância a este facto, levando a que nas últimas décadas e anos, se tenham estudado diversos índices e equipamentos de medição do coeficiente de atrito de um dado pavimento aquando da presença de água. O objectivo da presente dissertação é o de aprofundar o conhecimento sobre a medição do coeficiente de atrito da superfície dos pavimentos de infraestruturas rodoviárias e aeroportuárias, com a particular incidência no estudo do equipamento GripTester. O trabalho realizado consistiu principalmente na análise de valores do coeficiente de atrito da camada de desgaste medidos no pavimento de um aeródromo, por três equipamentos GripTester, através de um ensaio de comparação interlaboratorial que foi organizado especificamente no âmbito desta dissertação. O trabalho desenvolvido permitiu concluir que foi importante desenvolver este estudo comparativo. Com efeito, a análise dos resultados do ensaio de comparação interlaboratorial mostrou que há diferenças no desempenho dos equipamentos participantes, que interessa aprofundar em estudos comparativos futuros.
Resumo:
Fungal contamination of air in 10 gymnasiums with swimming pools was monitored. Fifty air samples of 200 L each were collected, using a Millipore air tester, from the area surrounding the pool, in training studios, in showers and changing rooms for both sexes, and also, outside premises, since these are the places regarded as reference. Simultaneously, environmental parameters – temperature and humidity – were also monitored. Some 25 different species of fungi were identified. The six most commonly isolated genera were the following: Cladosporium sp. (36.6%), Penicillium sp. (19.0%), Aspergillus sp. (10.2%), Mucor sp. (7%), Phoma sp. and Chrysonilia sp. (3.3%). For yeasts, three different genera were identified, namely, Rhodotorula sp. (70%), Trichosporon mucoides and Cryptococcus uniguttulattus (10%).
Resumo:
Versão preprint.
Resumo:
Bioaerosols are mainly composed of fungal particles, bacteria and plant spores, being fungi responsible for the release of VOCs and micotoxins into indoor environments. Aspergillus flavus is a common opportunistic pathogen causing human infections and is involved in the production of aflatoxin and other secondary metabolites associated with toxic and allergic reactions. Poultry workers are exposed to high concentrations of fungi and are therefore more prone to develop associated pathologies. To evaluate occupational exposure of the workers to Aspergillus flavus and aflatoxins, six animal production facilities were selected, including 10 buildings, from which indoor air samples and outdoor reference samples were obtained. Twenty-five duplicate samples were collected by two methodologies: impactation onto malt extract agar of 25L air samples using a Millipore Air Tester were used to evaluate quantitative (CFU/m3) and qualitative (species identification, whenever possible) sample composition; 300 L air samples collected with the Coriolis Air Sampler into phosphate–saline buffer were used to isolate DNA, following molecular identification of Aspergillus section flavi using nor-1 specific primers by real-time PCR.
Resumo:
Several activities are ensured by dockers increase occupational exposure to several risk factors. being one of them the fungal burden from the load. In this study we aim at characterizing fungal contamination in one warehouse that storage sugar cane from a ship, and also in one crane cabinet that unload the same sugar cane from the ship. Air samples were collected from the warehouse and from inside the crane cabinet. An outdoor sample was also collected, from each sampling site, and regarding as reference. Sampling volume was selected depending in the contamination expected and the air samples were collect through an impaction method in a flow rate of 140 L/min onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%), using the Millipore air Tester (Millipore). Surfaces samples from the warehouse were collected by swabbing the surfaces of the same indoor sites, using a 10 by 10cm square stencil according to the International Standard ISO 18593 (2004). The obtained swabs were then plated onto MEA. All the collected samples were incubated at 27ºC for 5 to 7 days. After laboratory processing and incubation of the collected samples, quantitative (colony-forming units - CFU/m3 and CFU/m2) and qualitative results were obtained with identification of the isolated fungal species. Aspergillus fumigatus present the highest fungal load and WHO guideline was overcome in both indoor sampling sites. The results obtained in this study highlight the need to know better the exposure burden from dockers, and specifically to fungi contamination.