4 resultados para Microbiological and biochemical technologies
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Cork processing involves a boiling step to make the cork softer, which consumes a high volume of water and generates a wastewater with a high organic content, rich in tannins. An assessment of the final wastewater characteristics and of the boiling water composition along the boiling process was performed. The parameters studied were pH, color, total organic carbon (TOC), chemical and biochemical oxygen demands (COD, BOD5, BOD20), total suspended solids (TSS), total phenols and tannins (TP, TT). It was observed that the water solutes extraction power is significantly reduced for higher quantities of cork processed. Valid relationships between parameters were established not only envisaging wastewater characterization but also to provide an important tool for wastewater monitoring and for process control/optimization. Boiling water biodegradability presented decreasing values with the increase of cork processed and for the final wastewater its value is always lower than 0.5, indicating that these wastewaters are very difficult to treat by biological processes. The biodegradability was associated with the increase of tannin content that can rise up to 0.7 g/L. These compounds can be used by other industries when concentrated and the clarified wastewater can be reused, which is a potential asset in this wastewater treatment.
Resumo:
With the advent of wearable sensing and mobile technologies, biosignals have seen an increasingly growing number of application areas, leading to the collection of large volumes of data. One of the difficulties in dealing with these data sets, and in the development of automated machine learning systems which use them as input, is the lack of reliable ground truth information. In this paper we present a new web-based platform for visualization, retrieval and annotation of biosignals by non-technical users, aimed at improving the process of ground truth collection for biomedical applications. Moreover, a novel extendable and scalable data representation model and persistency framework is presented. The results of the experimental evaluation with possible users has further confirmed the potential of the presented framework.
Resumo:
Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R 2 ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R 2 = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.
Resumo:
The conquest of the West by the stagecoaches and then by railway, Ford and the automobile civilization, the Moon landing by Apollo 11, Microsoft, Apple, CNN, Google and Facebook have appeared to us as celebratory examples of the willingness and ability of the US to overcome the distance and the absence through so-called modern progress of transportation and communication. Undoubtedly, the imaginary and the instrumental power associated to transports and communication of the last century and a half are identified with the mental images that the world has of the US. A world that has eagerly imported and copy their technology and technological culture. Beyond the illusions, this attempting, which has always been praised to transcende space and eclipse the time to get to places and peole increasingly distant and fast, has always a dark side: the political control of population, commercial advertising, the spread of the rumors, noise and gossip. However, since at least the nineteenth century, the political project incorporated in modern transportation and communication technologies was not shared by some of the most remarkable thinkers in the US not only in that century, but also in the 20th century. This paper begins by rescue Ralph W. Emerson and Henry D. Thoreau legacy regarding to communication. Emerson conceived communication as a give-and-take with no coordination between the two, and does not involve contact with the other. Thoreau, in turn, argued that modern trasnportation and communications inventions are but pretty toys which distract attention from serious things, nothing more than 'improved means to an end that is not perfected.' Secondly, we show that this skeptical view of the techological improvement of transport and communication was proceed in an original way with James W. Carey, a media studies thinker who became known for his criticism of the transmission view of communication.