3 resultados para Metals in water

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concerns on metals in urban wastewater treatment plants (WWTPs) are mainly related to its contents in discharges to environment, namely in the final effluent and in the sludge produced. In the near future, more restrictive limits will be imposed to final effluents, due to the recent guidelines of the European Water Framework Directive (EUWFD). Concerning the sludge, at least seven metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) have been regulated in different countries, four of which were classified by EUWFD as priority substances and two of which were also classified as hazardous substances. Although WWTPs are not designed to remove metals, the study of metals behaviour in these systems is a crucial issue to develop predictive models that can help more effectively the regulation of pre-treatment requirements and contribute to optimize the systems to get more acceptable metal concentrations in its discharges. Relevant data have been published in the literature in recent decades concerning the occurrence/fate/behaviour of metals in WWTPs. However, the information is dispersed and not standardized in terms of parameters for comparing results. This work provides a critical review on this issue through a careful systematization, in tables and graphs, of the results reported in the literature, which allows its comparison and so its analysis, in order to conclude about the state of the art in this field. A summary of the main consensus, divergences and constraints found, as well as some recommendations, is presented as conclusions, aiming to contribute to a more concerted action of future research. © 2015, Islamic Azad University (IAU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents for the first time a systematic study on the optimization of the electrochemical cleaning time of a mercury film when it is used as a working electrode material in the analysis of toxic metals, such as Pb2+, used as model metal, in real samples by SWASV. The optimization study for the film’s cleaning time aimed at attaining a Pb2+ minimum value in the film after the re-oxidation step of the pre-concentrated metal, given the impossibility of complete removal of traces of the electroactive species from the film. This value was kept constant in each concentration range studied ensuring thus that all assays were performed in initial identical conditions. An assay performed on a synthetic sample was taken as reference. In it, given the absence of matrix effects, and after the electrochemical cleaning step, a direct proportionality was observed between the residual amounts of Pb2+ in the film (which for the cleaning time used was never completely removed) and Pb2+ concentration in the solution. This fact determined a high correlation between Pb2+ peak current and Pb2+ concentration which was not observed when real samples (tree leaves) were analyzed. This behavior may result from the presence of the interfering surfactants always present in real samples of complex matrix. Cleaning time optimization was performed for the following Pb2+ concentration ranges in the real samples of complex matrix: 0.006-0.020, 0.020-0.080, 0.060-0.200 and 0.100-0.600 ppb. As expected, in order to obtain identical levels of film’s cleaning efficiency, the need for longer cleaning times has been observed for higher concentrations. The optimized cleaning times for the concentration ranges under study were 120, 150, 180 e 300 s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubility of ethene in water and in the fermentation medium of Xanthobacter Py(2) was determined with a Ben-Naim-Baer type apparatus. The solubility measurements were carried out in the temperature range of (293.15 to 323.15) K and at atmospheric pressure with a precision of about +/- 0.3 %. The Ostwald coefficients, the mole fractions of the dissolved ethene, at the gas partial pressure of 101.325 kPa, and the Henry coefficients, at the water vapor pressure, were calculated using accurate thermodynamic relations. A comparison between the solubility of ethene in water and in the cultivation medium has shown that this gas is about 2.4 % more soluble in pure water. On the other hand, from the solubility temperature dependence, the Gibbs energy, enthalpy, and entropy changes for the process of transferring the solute from the gaseous phase to the liquid solutions were also determined. Moreover, the perturbed-chain statistical associating fluid theory equation of state (PC-SAFT EOS) model was used for the prediction of the solubility of ethene in water. New parameters, k(ij), are proposed for this system, and it was found that using a ky temperature-dependent PC-SAFT EOS describes more accurately the behavior solubilities of ethene in water at 101.325 kPa, improving the deviations to 1 %.