38 resultados para Metal Matrix Composite
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 +/- 0.015 and 3.214 +/- 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 x 10(-7) M was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This work presents for the first time a systematic study on the optimization of the electrochemical cleaning time of a mercury film when it is used as a working electrode material in the analysis of toxic metals, such as Pb2+, used as model metal, in real samples by SWASV. The optimization study for the film’s cleaning time aimed at attaining a Pb2+ minimum value in the film after the re-oxidation step of the pre-concentrated metal, given the impossibility of complete removal of traces of the electroactive species from the film. This value was kept constant in each concentration range studied ensuring thus that all assays were performed in initial identical conditions. An assay performed on a synthetic sample was taken as reference. In it, given the absence of matrix effects, and after the electrochemical cleaning step, a direct proportionality was observed between the residual amounts of Pb2+ in the film (which for the cleaning time used was never completely removed) and Pb2+ concentration in the solution. This fact determined a high correlation between Pb2+ peak current and Pb2+ concentration which was not observed when real samples (tree leaves) were analyzed. This behavior may result from the presence of the interfering surfactants always present in real samples of complex matrix. Cleaning time optimization was performed for the following Pb2+ concentration ranges in the real samples of complex matrix: 0.006-0.020, 0.020-0.080, 0.060-0.200 and 0.100-0.600 ppb. As expected, in order to obtain identical levels of film’s cleaning efficiency, the need for longer cleaning times has been observed for higher concentrations. The optimized cleaning times for the concentration ranges under study were 120, 150, 180 e 300 s, respectively.
Resumo:
This paper presents the Direct Power Control of Three-Phase Matrix Converters (DPC-MC) operating as Unified Power Flow Controllers (UPFC). Since matrix converters allow direct AC/AC power conversion without intermediate energy storage link, the resulting UPFC has reduced volume and cost, together with higher reliability. Theoretical principles of DPC-MC method are established based on an UPFC model, together with a new direct power control approach based on sliding mode control techniques. As a result, active and reactive power can be directly controlled by selection of an appropriate switching state of matrix converter. This new direct power control approach associated to matrix converters technology guarantees decoupled active and reactive power control, zero error tracking, fast response times and timely control actions. Simulation results show good performance of the proposed system.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
The scaling exponent of 1.6 between anomalous Hall and longitudinal conductivity, characteristic of the universal Hall mechanism in dirty-metal ferromagnets, emerges from a series of CrO2 films as we systematically increase structural disorder. Magnetic disorder in CrO2 increases with temperature and this drives a separate topological Hall mechanism. We find that these terms are controlled discretely by structural and magnetic defect populations, and their coexistence leads to apparent divergence from exponent 1.6, suggesting that the universal term is more prevalent than previously realized.
Resumo:
This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.
Resumo:
This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.
Resumo:
We suggest that the weak-basis independent condition det(M-nu) = 0 for the effective neutrino mass matrix can be used in order to remove the ambiguities in the reconstruction of the neutrino mass matrix from input data available from present and future feasible experiments. In this framework, we study the full reconstruction of M-nu with special emphasis on the correlation between the Majorana CP-violating phase and the various mixing angles. The impact of the recent KamLAND results on the effective neutrino mass parameter is also briefly discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Laminate composite multi-cell structures have to support both axial and shear stresses when sustaining variable twist. Thus the properties and design of the laminate may not be the most adequate at all cross-sections to support the torsion imposed on the cells. In this work, the effect of some material and geometric parameters on the optimal mechanical behaviour of a multi-cell composite laminate structure is studied when torsion is present. A particle swarm optimization technique is used to maximize the multi-cell structure torsion constant that can be used to obtain the angle of twist of the composite laminate profile.
Resumo:
Magneto-electro-elastic structures are built from materials that provide them the ability to convert in an interchangeable way, magnetic, electric and mechanical forms of energy. This characteristic can therefore provide an adaptive behaviour to a general configuration elastic structure, being commonly used in association with any type of composite material in an embedded or surface mounted mode, or by considering the usage of multiphase materials that enable achieving different magneto-electro-elastic properties. In a first stage of this work, a few cases studies will be considered to enable the validation of the model considered and the influence of the coupling characteristics of this type of adaptive structures. After that we consider the application of a recent computational intelligence technique, the differential evolution, in a deflection profile minimization problem. Studies on the influence of optimization parameters associated to the problem considered will be performed as well as the adoption of an adaptive scheme for the perturbation factor. Results are also compared with those obtained using an enhanced particle swarm optimization technique. (C) 2013 Elsevier Ltd. All rights reserved.