4 resultados para Memory-based

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental optoelectronic characterization of a p-i'(a-SiC:H)-n/pi(a-Si:H)-n heterostructure with low conductivity doped layers shows the feasibility of tailoring channel bandwidth and wavelength by optical bias through back and front side illumination. Front background enhances light-to-dark sensitivity of the long and medium wavelength range, and strongly quenches the others. Back violet background enhances the magnitude in short wavelength range and reduces the others. Experiments have three distinct programmed time slots: control, hibernation and data. Throughout the control time slot steady light wavelengths illuminate either or both sides of the device, followed by the hibernation without any background illumination. The third time slot allows a programmable sequence of different wavelengths with an impulse frequency of 6000Hz to shine upon the sensor. Results show that the control time slot illumination has an influence on the data time slot which is used as a volatile memory with the set, reset logical functions. © IFIP International Federation for Information Processing 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A double pi'npin heterostructure based on amorphous SiC has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. An impulse of a configurable length and amplitude is applied to a 390 nm LED which illuminates one of the sensor surfaces, followed by a time period without any illumination after which an input signal with a different wavelength is impinged upon the front surface. Results show that the intensity and duration of the impulse illumination of the surfaces influences the sensor's response with different output for the same input signal. This paper studies this effect and proposes an application as a short term light memory. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify concurrent programming, current STM implementations incur significant overheads that render them impractical for many real-sized programs. The key insight of this work is that we do not need to use the same costly barriers for all the memory managed by a real-sized application, if only a small fraction of the memory is under contention lightweight barriers may be used in this case. In this work, we propose a new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to access objects that are not under contention. We show that this approach is able to make the performance of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging benchmarks. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.