2 resultados para Medicine, General and Internal
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Knowledge on forced magma injection and magma flow in dykes is crucial for the understanding of how magmas migrate through the crust to the Earth's surface. Because many questions still persist, we used the long, thick, and deep-seated Foum Zguid dyke (Morocco) to investigate dyke emplacement and internal flow by means of magnetic methods, structural analysis, petrography, and scanning electron microscopy. We also investigated how the host rocks accommodated the intrusion. Regarding internal flow: 1. Important variations of the rock magnetic properties and magnetic fabric occur with distance from dyke wall; 2. anisotropy of anhysteretic remanent magnetization reveals that anisotropy of magnetic susceptibility (AMS) results mainly from the superposition of subfabrics with distinct coercivities and that the imbrication between magnetic foliation and dyke plane is more reliable to deduce flow than the orientation of the AMS maximum principal axis; and 3. a dominant upward flow near the margins can be inferred. The magnetic fabric closest to the dyke wall likely records magma flow best due to fast cooling, whereas in the core the magnetic properties have been affected by high-temperature exsolution and metasomatic effects due to slow cooling. Regarding dyke emplacement, this study shows that the thick forceful intrusion induced deformation by homogeneous flattening and/or folding of the host sedimentary strata. Dewatering related to heat, as recorded by thick quartz veins bordering the dyke in some localities, may have also helped accommodating dyke intrusion. The spatial arrangement of quartz veins and their geometrical relationship with the dyke indicate a preintrusive to synintrusive sinistral component of strike slip.
Resumo:
We present new Rayleigh-wave dispersion maps of the western Iberian Peninsula for periods between 8 and 30 s, obtained from correlations of seismic ambient noise, following the recent increase in seismic broadband network density in Portugal and Spain. Group velocities have been computed for each station pair using the empirical Green's functions generated by cross-correlating one-day-length seismic ambient-noise records. The resulting high-path density allows us to obtain lateral variations of the group velocities as a function of period in cells of 0.5 degrees x 0.5 degrees with an unprecedented resolution. As a result we were able to address some of the unknowns regarding the lithospheric structure beneath SW Iberia. The dispersion maps allow the imaging of the major structural units, namely the Iberian Massif, and the Lusitanian and Algarve Meso-Cenozoic basins. The Cadiz Gulf/Gibraltar Strait area corresponds to a strong low-velocity anomaly, which can be followed to the largest period inverted, although slightly shifted to the east at longer periods. Within the Iberian Massif, second-order perturbations in the group velocities are consistent with the transitions between tectonic units composing the massif. (C) 2013 Elsevier B.V. All rights reserved.