11 resultados para Marquette University. Slavic Institute.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
Mestrado em Fisioterapia.
Resumo:
ABSTRACT - Tinea pedis and onychomycosis are two rather diverse clinical manifestations of superficial fungal infections, and their etiologic agents may be dermatophytes, non-dermatophyte moulds or yeasts. This study was designed to statistically describe the data obtained as results of analysis conducted during a four year period on the frequency of Tinea pedis and onychomycosis and their etiologic agents. A questionnaire was distributed from 2006 to 2010 and answered by 186 patients, who were subjected to skin and/or nail sampling. Frequencies of the isolated fungal species were cross-linked with the data obtained with the questionnaire, seeking associations and predisposing factors. One hundred and sixty three fungal isolates were obtained, 24.2% of which composed by more than one fungal species. Most studies report the two pathologies as caused primarily by dermatophytes, followed by yeasts and lastly by non-dermatophytic moulds. Our study does not challenge this trend. We found a frequency of 15.6% of infections caused by dermatophytes (with a total of 42 isolates) of which T. rubrum was the most frequent species (41.4%). There was no significant association (p >0.05) among visible injury and the independent variables tested, namely age, gender, owning pet, education, swimming pools attendance, sports activity and clinical information. Unlike other studies, the variables considered did not show the expected influence on dermatomycosis of the lower limbs. It is hence necessary to conduct further studies to specifically identify which variables do in fact influence such infections.
Resumo:
Recensão crítica do livro "AMJAD, Muhammad; FRAZ, Muhammad Moazam - Developing corporate image in higher education sector: a case study of University of East Anglia Norwich, United Kingdom. Lisboa: LAP LAMBERT Academic Publishing, 2012”.
Resumo:
On 25 April 1974 the Armed Forces Movement (MFA – Movimento das Forças Armadas) rose against the dictatorial regime that had governed Portugal for 48 years. This event was the beginning of a turbulent transition process that was to culminate in the approval of a new constitution in April 1976 and in the instauration of a Western style pluralist democracy. There are many political scientists and historians who note the original and unexpected nature of this transition; however, there are very many different interpretations with respect to the roles played by each of the actors in the process: the armed forces, the parties and political movements and the social forces/movements. The aim of this paper is to clarify this matter through an examination of the principal events of the revolution.
Resumo:
This paper presents a single precision floating point arithmetic unit with support for multiplication, addition, fused multiply-add, reciprocal, square-root and inverse squareroot with high-performance and low resource usage. The design uses a piecewise 2nd order polynomial approximation to implement reciprocal, square-root and inverse square-root. The unit can be configured with any number of operations and is capable to calculate any function with a throughput of one operation per cycle. The floatingpoint multiplier of the unit is also used to implement the polynomial approximation and the fused multiply-add operation. We have compared our implementation with other state-of-the-art proposals, including the Xilinx Core-Gen operators, and conclude that the approach has a high relative performance/area efficiency. © 2014 Technical University of Munich (TUM).
Resumo:
Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).
Resumo:
It is considered that using crushed recycled concrete as aggregate for concrete production is a viable alternative to dumping and would help to conserve abiotic resources. This use has fundamentally been based on the coarse fraction because the fine fraction is likely to degrade the performance of the resulting concrete. This paper presents results from a research work undertaken at Institut Superior Tecnico (IST), Lisbon, Portugal, in which the effects of incorporating two types of superplasticizer on the mechanical performance of concrete containing fine recycled aggregate were evaluated. The purpose was to see if the addition of superplasticizer would offset the detrimental effects associated with the use of fine recycled concrete aggregate. The experimental programme is described and the results of tests for splitting tensile strength, modulus of elasticity and abrasion resistance are presented. The relative performance of concrete made with recycled aggregate was found to decrease. However, the same concrete with admixtures in general exhibited a better mechanical performance than the reference mixes without admixtures or with a less active superplasticizer. Therefore, it is argued that the mechanical performance of concrete made with fine recycled concrete aggregates can be as good as that of conventional concrete, if superplasticizers are used to reduce the water-cement ratio of the former concrete.
Resumo:
The reuse of structural concrete elements to produce new concrete aggregates is accepted as an alternative to dumping them and is favourable to the sustainability of natural reserves. Even though the construction sector is familiar with the use of coarse recycled concrete aggregates, the recycled concrete fines are classified as less noble resources. This research sets out to limit the disadvantages associated with the performance of concrete containing fine recycled concrete aggregates through the use of superplasticisers. Two types of latest generation superplasticisers were used that differ in terms of water reduction capacity and robustness, and the workability, density and compressive strength of each of the compositions analysed were then compared: a reference concrete, with no plasticisers, and concrete mixes with the superplasticisers. For each concrete family mixes with 0%, 10%, 30%, 50% and 100% replacement ratios of fine natural aggregates (FNA) by fine recycled concrete aggregates (FRA) were analysed. Concrete with incorporation of recycled aggregates was found to have poorer relative performance. The mechanical performance of concrete with recycled aggregates and superplasticisers was generally superior to that of the reference concrete with no admixtures and of conventional concrete with lower performance superplasticisers.
Resumo:
We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.
Resumo:
Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 19-23 years, completed the University Students Stress Inventory, the Depression Anxiety Stress Scales and the Ways of Coping Questionnaire. Two 24h-Holter recordings were performed, on academic activity days, including one of them an exam situation. Results: Students tend to present moderate stress levels, and prefer problem-focused coping strategies in order to manage stress. Exam situations are perceived as significant stressors. Although we found no significant differences in HRV (SDNN), between days with and without an exam, we registered a lower SDNN score and a variation in heart rate (HR) related to exam situation (maximum HR peak at 10 minutes before the exam, and total HR recovery 20 minutes after the exam), reflecting sympathetic activation due to stress. Conclusions: These results suggest that academic events, especially those related to exam situations, are the cause of stress in university students, with implications at cardiovascular level, underlying the importance of interventions that help these students improve their coping skills and optimize stress management, in order to improve academic achievement and promote well-being and quality of life.