3 resultados para Markov Switching model
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The authors extend their earlier work on the stability of a reacting binary polymer blend with respect to demixing [D. J. Read, Macromolecules 31, 899 (1998); P. I. C. Teixeira , Macromolecules 33, 387 (2000)] to the case where one of the polymers is rod-like and may order nematically. As before, the authors combine the random phase approximation for the free energy with a Markov chain model for the chemistry to obtain the spinodal as a function of the relevant degrees of reaction. These are then calculated by assuming a simple second-order chemical kinetics. Results are presented, for linear systems, which illustrate the effects of varying the proportion of coils and rods, their relative sizes, and the strength of the nematic interaction between the rods. (c) 2007 American Institute of Physics.
Resumo:
The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia