41 resultados para MULTILAYER STRUCTURE
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.
Resumo:
In the Sparse Point Representation (SPR) method the principle is to retain the function data indicated by significant interpolatory wavelet coefficients, which are defined as interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the computation of partial derivatives of a function from the information of its SPR content is performed in two steps. The first one is a refinement procedure to extend the SPR by the inclusion of new interpolated point values in a security zone. Then, for points in the refined grid, such derivatives are approximated by uniform finite differences, using a step size proportional to each point local scale. If required neighboring stencils are not present in the grid, the corresponding missing point values are approximated from coarser scales using the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme, we demonstrate that such adaptive finite differences can be formulated in terms of a collocation scheme based on the wavelet expansion associated to the SPR. For this purpose, we prove some results concerning the local behavior of such wavelet reconstruction operators, which stand for SPR grids having appropriate structures. This statement implies that the adaptive finite difference scheme and the one using the step size of the finest level produce the same result at SPR grid points. Consequently, in addition to the refinement strategy, our analysis indicates that some care must be taken concerning the grid structure, in order to keep the truncation error under a certain accuracy limit. Illustrating results are presented for 2D Maxwell's equation numerical solutions.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
The crustal and lithospheric mantle structure at the south segment of the west Iberian margin was investigated along a 370 km long seismic transect. The transect goes from unthinned continental crust onshore to oceanic crust, crossing the ocean-continent transition (OCT) zone. The wide-angle data set includes recordings from 6 OBSs and 2 inland seismic stations. Kinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the modeled free-air anomaly data. The interpretation of coincident multi-channel near-vertical and wide-angle reflection data sets allowed the identification of four main crustal domains: (i) continental (east of 9.4 degrees W); (ii) continental thinning (9.4 degrees W-9.7 degrees W): (iii) transitional (9.7 degrees W-similar to 10.5 degrees W); and (iv) oceanic (west of similar to 10.5 degrees W). In the continental domain the complete crustal section of slightly thinned continental crust is present. The upper (UCC, 5.1-6.0 km/s) and the lower continental crust (LCC, 6.9-7.2 km/s) are seismically reflective and have intermediate to low P-wave velocity gradients. The middle continental crust (MCC, 6.35-6.45 km/s) is generally unreflective with low velocity gradient. The main thinning of the continental crust occurs in the thinning domain by attenuation of the UCC and the LCC. Major thinning of the MCC starts to the west of the LCC pinchout point, where it rests directly upon the mantle. In the thinning domain the Moho slope is at least 13 degrees and the continental crust thickness decreases seaward from 22 to 11 km over a similar to 35 km distance, stretched by a factor of 1.5 to 3. In the oceanic domain a two-layer high-gradient igneous crust (5.3-6.0 km/s; 6.5-7.4 km/s) was modeled. The intra-crustal interface correlates with prominent mid-basement, 10-15 km long reflections in the multi-channel seismic profile. Strong secondary reflected PmP phases require a first order discontinuity at the Moho. The sedimentary cover can be as thick as 5 km and the igneous crustal thickness varies from 4 to 11 km in the west, where the profile reaches the Madeira-Tore Rise. In the transitional domain the crust has a complex structure that varies both horizontally and vertically. Beneath the continental slope it includes exhumed continental crust (6.15-6.45 km/s). Strong diffractions were modeled to originate at the lower interface of this layer. The western segment of this transitional domain is highly reflective at all levels, probably due to dykes and sills, according to the high apparent susceptibility and density modeled at this location. Sub-Moho mantle velocity is found to be 8.0 km/s, but velocities smaller than 8.0 km/s confined to short segments are not excluded by the data. Strong P-wave wide-angle reflections are modeled to originate at depth of 20 km within the lithospheric mantle, under the eastern segment of the oceanic domain, or even deeper at the transitional domain, suggesting a layered structure for the lithospheric mantle. Both interface depths and velocities of the continental section are in good agreement to the conjugate Newfoundland margin. A similar to 40 km wide OCT having a geophysical signature distinct from the OCT to the north favors a two pulse continental breakup.
Resumo:
We report in this paper the recent advances we obtained in optimizing a color image sensor based on the laser-scanned-photodiode (LSP) technique. A novel device structure based on a a-SiC:H/a-Si:H pin/pin tandem structure has been tested for a proper color separation process that takes advantage on the different filtering properties due to the different light penetration depth at different wavelengths a-SM and a-SiC:H. While the green and the red images give, in comparison with previous tested structures, a weak response, this structure shows a very good recognition of blue color under reverse bias, leaving a good margin for future device optimization in order to achieve a complete and satisfactory RGB image mapping. Experimental results about the spectral collection efficiency are presented and discussed from the point of view of the color sensor applications. The physics behind the device functioning is explained by recurring to a numerical simulation of the internal electrical configuration of the device.
Resumo:
This work presents preliminary results in the study of a novel structure for a laser scanned photodiode (LSP) type of image sensor. In order to increase the signal output, a stacked p-i-n-p-i-n structure with an intermediate light-blocking layer is used. The image and the scanning beam are incident through opposite sides of the sensor and their absorption is kept in separate junctions by an intermediate light-blocking layer. As in the usual LSP structure the scanning beam-induced photocurrent is dependent on the local illumination conditions of the image. The main difference between the two structures arises from the fact that in this new structure the image and the scanner have different optical paths leading to an increase in the photocurrent when the scanning beam is incident on a region illuminated on the image side of the sensor, while a decreasing in the photocurrent was observed in the single junction LSP. The results show that the structure can be successfully used as an image sensor even though some optimization is needed to enhance the performance of the device.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.
Resumo:
The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.
Resumo:
Mononuclear manganese(II) [Mn(kappa O-HL)(2)(CH3OH)(4)] (4), nickel(II) [Ni(kappa O-2, kappa N-L)(H2O)(3)] (5), cadmium(II) [Cd(kappa O-2-HL)(2)(CH3OH)(3)] (7), tetranuclear zinc(II) [Zn-4(mu-OH)(2)(1 kappa O:2 kappa O-HL)(4)(kappa O-HL)(2)(H2O)(4)] (6) and polynuclear aqua sodium(I) [Na(H2O)(2)(mu-H2O)(2)](n)(HL)(n) (2) and magnesium(II) [Mg(OH)(H2O)(mu-H2O)(2)](n)(-HL)(n) (3) complexes were synthesized using 3-(2-carboxyphenyl-hydrazone)pentane-2,4-dione (H2L, 1) as a ligand precursor. The complexes were characterized by single crystal X-ray diffraction, elemental analysis, IR, H-1 and C-13 NMR (for 2, 3, 6 and 7) spectroscopies. Mono- or dianionic deprotonated derivatives of H2L display different coordination modes and lead to topologies and nuclearities of the complexes depending on metal ions and conditions used for the syntheses. Extensive intermolecular H-bonds form supramolecular arrangements in 1D chains (4 and 6), 1D chains of the organic anion and 2D networks of the metal-aqua aggregates (2 and 3), 2D networks (7) or even 3D frameworks (5). Electrochemical studies, by cyclic voltammetry and controlled potential electrolysis, show ligand centred redox processes as corroborated by theoretical DFT calculations in terms of LUMO and HOMO compositions. (C) 2012 Elsevier Ltd. All rights reserved.