13 resultados para METAL ACCUMULATION
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We discuss the operation of a new type of optical sensor (MISCam) based on a metal-insulator-semiconductor (MIS) structure. The operation principle relies on light-induced changes of the band bending and barrier height at the interface between semiconductor and insulator. An image is obtained from the quenching of the ac signal in analogy to the principle of the laser-scanned photodiode (LSP). Lateral resolution depends on the semiconductor material chosen. We have characterised the MIS structures by C-V, I-V, and spectral response measurements testing different types of insulators like a-Si3N4, SiO2, and AlN. The presence of slow interface charges allows for image memory. Colour sensors can be realised by controlling sign and magnitude of the electric fields in the base and the interface region.
Resumo:
The scaling exponent of 1.6 between anomalous Hall and longitudinal conductivity, characteristic of the universal Hall mechanism in dirty-metal ferromagnets, emerges from a series of CrO2 films as we systematically increase structural disorder. Magnetic disorder in CrO2 increases with temperature and this drives a separate topological Hall mechanism. We find that these terms are controlled discretely by structural and magnetic defect populations, and their coexistence leads to apparent divergence from exponent 1.6, suggesting that the universal term is more prevalent than previously realized.
Resumo:
The aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 +/- 0.015 and 3.214 +/- 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 x 10(-7) M was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Background - The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical estimates of the rate and effects of mutation in the protists. Results - We performed a mutation accumulation (MA) experiment in Tetrahymena thermophila, a species that can reproduce sexually and asexually in nature, and measured both the mean decline and variance increase in fitness of 20 lines. The results obtained with T. thermophila were compared with T. pyriformis that is an obligate asexual species. We show that MA lines of T. thermophila go to extinction at a rate of 1.25 clonal extinctions per bottleneck. In contrast, populations of T. pyriformis show a much higher resistance to extinction. Variation in gene copy number is likely to be a key factor in explaining these results, and indeed we show that T. pyriformis has a higher mean copy number per cell than T. thermophila. From fitness measurements during the MA experiment, we infer a rate of mutation to copy number variation of 0.0333 per haploid MAC genome of T. thermophila and a mean effect against copy number variation of 0.16. A strong effect of population size in the rate of fitness decline was also found, consistent with the increased power of natural selection. Conclusions - The rate of clonal extinction measured for T. thermophila is characteristic of a mutational degradation and suggests that this species must undergo sexual reproduction to avoid the deleterious effects detected in the laboratory experiments. We also suggest that an increase in chromosomal copy number associated with the phenotypic assortment of amitotic divisions can provide an alternative mechanism to escape the deleterious effect of random chromosomal copy number variation in species like T. pyriformis that lack the resetting mechanism of sexual reproduction. Our results are relevant to the understanding of cell line longevity and senescence in ciliates.
Resumo:
This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
This work concerns recent advances (since 2005) in the oxidative functionalization of alkanes, alkenes and ketones, under mild conditions, catalyzed by homoscorpionate tris(pyrazol-1-yl)methane metal complexes. The main types of such homogeneous or supported catalysts are classified, and the critical analysis of the most efficient catalytic systems in the different reactions is presented. These reactions include the mild oxidation of alkanes (typically cyclohexane as a model substrate) with hydrogen peroxide (into alkyl hydroperoxides, alcohols, and ketones), the hydrocarboxylation of gaseous alkanes (with carbon monoxide and potassium peroxodisulfate) into the corresponding Cn+1 carboxylic acids, as well as the epoxidation of alkenes and the Baeyer-Villiger oxidation of linear and cyclic ketones with hydrogen peroxide into the corresponding esters and lactones. Effects of various reaction parameters are highlighted and the preferable requirements for a prospective homogeneous or supported C-scorpionate-M-based catalyst in oxidative transformations of those substrates are identified. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Clustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
Resumo:
Microwave assisted synthesis of the Cu(I) compound [Cu(µ4-4-ptz)]n [1, 4-ptz = 5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu3(µ3-4-ptz)4(µ2-N3)2(DMF)2]n∙(DMF)2n (2) and [Cu(µ2-4-ptz)2(H2O)2]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H2O2) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h−1), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.
Resumo:
Toluene hydrogenation was studied over catalysts based on Pt supported on large pore zeolites (HUSY and HBEA) with different metal/acid ratios. Acidity of zeolites was assessed by pyridine adsorption followed by FTIR showing only small changes before and after Pt introduction. Metal dispersion was determined by H2–O2 titration and verified by a linear correlation with the intensity of Pt0–CO band obtained by in situ FTIR. It was also observed that the electronic properties of Pt0 clusters were similar for the different catalysts. Catalytic tests showed rapid catalyst deactivation with an activity loss of 80–95% after 60 min of reaction. The turnover frequency of fresh catalysts depended both on metal dispersion and the support. For the same support, it changed by a 1.7-fold (HBEA) and 4.0-fold (HUSY) showing that toluene hydrogenation is structure-sensitive, i.e. hydrogenating activity is not a unique function of accessible metal. This was proposed to be due to the contribution to the overall activity of the hydrogenation of adsorbed toluene on acid sites via hydrogen spillover. Taking into account the role of zeolite acidity, the catalysts series were compared by the activity per total adsorbing sites which was observed to increase steadily with nPt/(nPt + nA). An increase of the accessible Pt atoms leads to an increase on the amount of spilled over hydrogen available in acid sites therefore increasing the overall activity. Pt/HBEA catalysts were found to be more active per total adsorbing site than Pt/HUSY which is proposed to be due to an augmentation in the efficiency of spilled over hydrogen diffusion related to the proximity between Pt clusters and acid sites. The intervention of Lewis acid sites in a greater extent than that measured by pyridine adsorption may also contribute to this higher activity of Pt/HBEA catalysts. These results reinforce the importance of model reactions as a closer perspective to the relevant catalyst properties in reaction conditions.
Resumo:
The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.