4 resultados para Mäkelä, Klaus: Alcoholics Anonymous as a mutual-help movement
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar
Resumo:
Dissertação apresentada para obtenção do grau de Mestre em Ciências da Educação - Área de especialização em Administração Escolar
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do grau de mestre em Didáticas Integradas em Língua Portuguesa, Matemática, Ciências Naturais e Sociais
Resumo:
Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.