3 resultados para Logistic Map
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
The Evidence Accumulation Clustering (EAC) paradigm is a clustering ensemble method which derives a consensus partition from a collection of base clusterings obtained using different algorithms. It collects from the partitions in the ensemble a set of pairwise observations about the co-occurrence of objects in a same cluster and it uses these co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. The Probabilistic Evidence Accumulation for Clustering Ensembles (PEACE) algorithm is a principled approach for the extraction of a consensus clustering from the observations encoded in the co-association matrix based on a probabilistic model for the co-association matrix parameterized by the unknown assignments of objects to clusters. In this paper we extend the PEACE algorithm by deriving a consensus solution according to a MAP approach with Dirichlet priors defined for the unknown probabilistic cluster assignments. In particular, we study the positive regularization effect of Dirichlet priors on the final consensus solution with both synthetic and real benchmark data.