10 resultados para Load flour calculation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper models an n-stage stacked Blumlein generator for bipolar pulses for various load conditions. Calculation of the voltage amplitudes in time domain at the load and between stages is described for an n-stage generator. For this, the reflection and transmission coefficients are mathematically modeled where impedance discontinuity occurs (i.e., at the junctions between two transmission lines). The mathematical model developed is assessed by comparing simulation results to experimental data from a two-stage Blumlein solid-state prototype.
Resumo:
The main intend of this work, is to determinate the Specific Absorption Rate (SAR) on human head tissues exposed to radiation caused by sources of 900 and 1800MHz, since those are the typical frequencies for mobile communications systems nowadays. In order to determinate the SAR, has been used the FDTD (Finite Difference Time Domain), which is a numeric method in time domain, obtained from the Maxwell equations in differential mode. In order to do this, a computational model from the human head in two dimensions made with cells of the smallest possible size was implemented, respecting the limits from computational processing. It was possible to verify the very good efficiency of the FDTD method in the resolution of those types of problems.
Resumo:
O presente trabalho teve como objectivos avaliar a influência de diversas grandezas e parâmetros de ensaio no índice de fluidez de termoplásticos e calcular a incerteza associada às determinações. Numa primeira fase, procedeu-se à identificação dos principais parâmetros que influenciam a determinação do índice de fluidez, tendo sido seleccionados a temperatura do plastómetro, o peso de carga, o diâmetro da fieira, o comprimento da medição, o tipo de corte e o número de provetes. Para avaliar a influência destes parâmetros na medição do índice de fluidez, optou-se pela realização de um planeamento de experiências, o qual foi dividido em três etapas. Para o tratamento dos resultados obtidos utilizou-se como ferramenta a análise de variância. Após a completa análise dos desenhos factoriais, verificou-se que os efeitos dos factores temperatura do plastómetro, peso de carga e diâmetro da fieira apresentam um importante significado estatístico na medição do índice de fluidez. Na segunda fase, procedeu-se ao cálculo da incerteza associada às medições. Para tal seleccionou-se um dos métodos mais usuais, referido no Guia para a Expressão da Incerteza da Medição, conhecido como método GUM, e pela utilização da abordagem “passo a passo”. Inicialmente, foi necessária a construção de um modelo matemático para a medição do índice de fluidez que relacionasse os diferentes parâmetros utilizados. Foi estudado o comportamento de cada um dos parâmetros através da utilização de duas funções, recorrendo-se novamente à análise de variância. Através da lei de propagação das incertezas foi possível determinar a incerteza padrão combinada,e após estimativa do número de graus de liberdade, foi possível determinar o valor do coeficiente de expansão. Finalmente determinou-se a incerteza expandida da medição, relativa à determinação do índice de fluidez em volume.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.