1 resultado para Learning Algorithm
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (9)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (28)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (9)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (27)
- CentAUR: Central Archive University of Reading - UK (24)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (12)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@University of Nebraska - Lincoln (3)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Helda - Digital Repository of University of Helsinki (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (70)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (26)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (30)
- Queensland University of Technology - ePrints Archive (371)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (22)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (6)
- Université de Montréal (1)
- Université de Montréal, Canada (11)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (1)
- University of Washington (5)
Resumo:
This paper addresses the estimation of object boundaries from a set of 3D points. An extension of the constrained clustering algorithm developed by Abrantes and Marques in the context of edge linking is presented. The object surface is approximated using rectangular meshes and simplex nets. Centroid-based forces are used for attracting the model nodes towards the data, using competitive learning methods. It is shown that competitive learning improves the model performance in the presence of concavities and allows to discriminate close surfaces. The proposed model is evaluated using synthetic data and medical images (MRI and ultrasound images).