2 resultados para Learning, visualisation, mental model, programming, cognitive load
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper addresses the estimation of object boundaries from a set of 3D points. An extension of the constrained clustering algorithm developed by Abrantes and Marques in the context of edge linking is presented. The object surface is approximated using rectangular meshes and simplex nets. Centroid-based forces are used for attracting the model nodes towards the data, using competitive learning methods. It is shown that competitive learning improves the model performance in the presence of concavities and allows to discriminate close surfaces. The proposed model is evaluated using synthetic data and medical images (MRI and ultrasound images).
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.