34 resultados para Lab-On-A-Chip Devices
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Esta tese tem por objectivo o desenho e avaliação de um sistema de contagem e classificação de veículos automóveis em tempo-real e sem fios. Pretende, também, ser uma alternativa aos actuais equipamentos, muito intrusivos nas vias rodoviárias. Esta tese inclui um estudo sobre as comunicações sem fios adequadas a uma rede de equipamentos sensores rodoviários, um estudo sobre a utilização do campo magnético como meio físico de detecção e contagem de veículos e um estudo sobre a autonomia energética dos equipamentos inseridos na via, com recurso, entre outros, à energia solar. O projecto realizado no âmbito desta tese incorpora, entre outros, a digitalização em tempo real da assinatura magnética deixada pela passagem de um veículo, no campo magnético da Terra, o respectivo envio para servidor via rádio e WAN, Wide Area Network, e o desenvolvimento de software tendo por base a pilha de protocolos ZigBee. Foram desenvolvidas aplicações para o equipamento sensor, para o coordenador, para o painel de controlo e para a biblioteca de Interface de um futuro servidor aplicacional. O software desenvolvido para o equipamento sensor incorpora ciclos de detecção e digitalização, com pausas de adormecimento de baixo consumo, e a activação das comunicações rádio durante a fase de envio, assegurando assim uma estratégia de poupança energética. Os resultados obtidos confirmam a viabilidade desta tecnologia para a detecção e contagem de veículos, assim como para a captura de assinatura usando magnetoresistências. Permitiram ainda verificar o alcance das comunicações sem fios com equipamento sensor embebido no asfalto e confirmar o modelo de cálculo da superfície do painel solar bem como o modelo de consumo energético do equipamento sensor.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
Resumo:
A mat of electrospun cellulose fibers are deposed on transparent conductive oxide covered glass, and two such plates enclose a nematic liquid crystal. Thus two new types of Cellulose based Polymer Dispersed Liquid Crystal devices, based on hydroxypropylcellulose and Cellulose Acetate and the nematic liquid crystal E7 have been obtained. The current-voltage characteristics indicates ionic type conduction. Heating-cooling cycles have been applied on the samples and the activation energies have been determined. Simultaneously with the thermo-stimulated currents, the optical transmission dependence on the d.c. electric field and temperature was registered. ON-OFF switching times have been determined for different control voltages. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
O trabalho descrito nesta dissertação de mestrado foca-se em geral na investigação de antenas impressas. São apresentados conceitos básicos, em conjunto com alguns exemplos desenvolvidos. No entanto, o principal foco prende-se com técnicas de miniaturização e reconfigurabilidade de antenas. A miniaturização de antenas é um tema de investigação de longa data, no entanto, novas técnicas e soluções são apresentadas regularmente. Nesta tese, é aplicada uma técnica recente, baseada na introdução de indutores encapsulados no elemento ressonante de uma antena, que permite miniaturizar um monopólio impresso com uma frequência de ressonância de 2.5 GHz. Outro assunto abordado neste trabalho é a reconfigurabilidade de antenas. Algumas das técnicas mais comuns na investigação actual são apresentadas e debatidas. Uma solução com recurso a díodos PIN é usada para estudar esta capacidade. Os conceitos e características deste tipo de componentes são apresentadas sendo feito o desenho e fabrico de um possível monopólio impresso reconfigurável para operação em dupla banda. Por fim, são combinadas as técnicas de miniaturização com inductor encapsulado e reconfigurabilidade através de díodos PIN, por forma a projectar uma antena reconfigurável muito pequena, para operação em duas bandas distintas. Os resultados são discutidos e com base nestes, algumas possíveis otimizações são propostas. The work reported in this dissertation is focused in the printed antenna research. Basic concepts of printed antennas are presented, along with a few examples that were developed. The main focus however, is around miniaturization and reconfigurability of antennas. Antenna miniaturization is a long time research subject, however, new techniques and solutions are presented everyday. In this thesis, a recent technique based on the introduction of chip inductors in the resonating element of a printed antenna is used in order to miniaturize a monopole with a resonating frequency at 2.5 GHz. Another issue approached in this work is antenna reconfigurability. Some common techniques used in antenna reconfiguration are presented and debated. A solution with PIN diodes is used to study this capability. The concepts and characteristics of this type of components are presented and an example of a reconfigurable printed monopole for dual-band operation is designed and fabricated. At last, miniaturization with chip inductor and reconfigurability through PIN diodes are used together to create a very small antenna for dual-band operation. The simulated and measured results are discussed and upon these, some possible optimizations are proposed.
Resumo:
The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.
Resumo:
WDM multilayered SiC/Si devices based on a-Si:H and a-SiC:H filter design are approached from a reconfigurable point of view. Results show that the devices, under appropriated optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development. Under front violet irradiation the magnitude of the red and green channels are amplified and the blue and violet reduced. Violet back irradiation cuts the red channel, slightly influences the magnitude of the green and blue ones and strongly amplifies de violet channel. This nonlinearity provides the possibility for selective removal of useless wavelengths. Particular attention is given to the amplification coefficient weights, which allow taking into account the wavelength background effects when a band needs to be filtered from a wider range of mixed signals, or when optical active filter gates are used to select and filter input signals to specific output ports in WDM communication systems. A truth table of an encoder that performs 8-to-1 multiplexer (MUX) function is presented.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The purpose of this paper is the design of an optoelectronic circuit based on a-SiC technology, able to act simultaneously as a 4-bit binary encoder or a binary decoder in a 4-to-16 line configurations and show multiplexer-based logical functions. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n multilayered structure produced by PECVD. To analyze it under information-modulated wave (color channels) and uniform irradiation (background) four monochromatic pulsed lights (input channels): red, green, blue and violet shine on the device. Steady state optical bias was superimposed separately from the front and the back sides, and the generated photocurrent was measured. Results show that the devices, under appropriate optical bias, act as reconfigurable active filters that allow optical switching and optoelectronic logic functions development providing the possibility for selective removal of useless wavelengths. The logic functions needed to construct any other complex logic functions are the NOT, and both or either an AND or an OR. Any other complex logic function that might be found can also be used as building blocks to achieve the functions needed for the retrieval of channels within the WDM communication link. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this paper we present results about the functioning of a multilayered a-SiC:H heterostructure as a device for wavelength-division demultiplexing of optical signals. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photogenerated carriers. Band gap engineering was used to adjust the photogeneration and recombination rates profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption and carrier collection in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. This photocurrent is used as an input for a demux algorithm based on the voltage controlled sensitivity of the device. The device functioning is explained with results obtained by numerical simulation of the device, which permit an insight to the internal electric configuration of the double heterojunction.These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photocapacitance due to the accumulation of space charge localized at the internal junction. The existence of a direct relation between the experimentally observed capacitive effects of the double diode and the quality of the semiconductor materials used to form the internal junction is highlighted.
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
Resumo:
Heart failure is the final stage of most of cardiac diseases. It is a complex syndrome in which the patients should have the following features: symptoms of heart failure, typically shortness of breath at rest or during exertion, and/or fatigue; signs of fluid retention such as pulmonary congestion or ankle swelling; and objective evidence of an abnormality of the structure or function of the heart at rest. This progressive syndrome as a high incidence and prevalence and poor prognosis: four-year mortality is around 50% with 40% of the patients admitted to hospital dying or readmitted within a year. With ageing, many patients will develop chronic heart failure, which, because of its symptoms, patient’s awareness of their risk of dying, and the effects of therapy, together with frequent hospitalizations, has considerable impact on patient’s health-related quality of life.