2 resultados para LONGITUDINAL STUDIES
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Background: Cardiovascular diseases and other non-communicable diseases are major causes of morbidity and mortality, responsible for 38 million deaths in 2012, 75 % occurring in low- and middle-income countries. Most of these countries are facing a period of epidemiological transition, being confronted with an increased burden of non-communicable diseases, which challenge health systems mainly designed to deal with infectious diseases. With the adoption of the World Health Organization “Global Action Plan for the Prevention and Control of non-communicable diseases, 2013–2020”, the national dimension of risk factors for non-communicable diseases must be reported on a regular basis. Angola has no national surveillance system for non-communicable diseases, and periodic population-based studies can help to overcome this lack of information. CardioBengo will collect information on risk factors, awareness rates and prevalence of symptoms relevant to cardiovascular diseases, to assist decision makers in the implementation of prevention and treatment policies and programs. Methods: CardioBengo is designed as a research structure that comprises a cross-sectional component, providing baseline information and the assembling of a cohort to follow-up the dynamics of cardiovascular diseases risk factors in the catchment area of the Dande Health and Demographic Surveillance System of the Health Research Centre of Angola, in Bengo Province, Angola. The World Health Organization STEPwise approach to surveillance questionnaires and procedures will be used to collect information on a representative sex-age stratified sample, aged between 15 and 64 years old. Discussion: CardioBengo will recruit the first population cohort in Angola designed to evaluate cardiovascular diseases risk factors. Using the structures in place of the Dande Health and Demographic Surveillance System and a reliable methodology that generates comparable results with other regions and countries, this study will constitute a useful tool for the surveillance of cardiovascular diseases. Like all longitudinal studies, a strong concern exists regarding dropouts, but strategies like regular visits to selected participants and a strong community involvement are in place to minimize these occurrences.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.