17 resultados para LIGAND GENE

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A exposição a formaldeído (FA), classificado como cancerígeno pela International Agency for Cancer Research (IARC), está epidemiologicamente associada a cancro e a alterações nucleares detectáveis pelo ensaio dos micronúcleos por bloqueio da citocinese (CBMN). Este método permite determinar vários marcadores de genotoxicidade, nomeadamente micronúcleos – biomarcadores de quebra ou perda de cromossomas; pontes nucleoplásmicas – biomarcador de re-arranjo cromossómico, pouca reparação e fusão de telómeros e, protusões nucleares – biomarcador de DNA amplificado. O gene X-ray repair cross-complementing group 3 (XRCC3) está envolvido na reparação de ligações cruzadas na recombinação de homólogos e quebras na cadeia dupla de DNA. Foi reportado pelo menos um polimorfismo no gene, o Thr241Met que tem sido associado a um aumento do dnao no DNA em vários estudos.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cell, the correct folding of many proteins depends on the function of preexisting ones known as Molecular Chaperones (for a review see Hartl and Hayer-Hartl 2009). These, were defined as proteins that bind to and stabilize an otherwise unstable conformation of another protein, and by controlling binding and release, facilitate its correct fate in vivo, be it folding, oligomeric assembly, transport to a particular subcellular compartment, or disposal by degradation. Molecular chaperones do not convey steric information specifying correct folding: instead, they prevent incorrect interactions within and between nonnative peptides, thus typically increasing the yield but not the rate of folding reactions. Molecular chaperones are ubiquitous and comprise several protein families that are structurally unrelated (Hartl and Hayer-Hartl 2009). The Hsp70s and the Chaperonin families have been extensively studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene expression of three antioxidant enzymes, Mn superoxide dismutase (MnSOD), Cu,Zn superoxide dismutase (Cu,ZnSOD), and glutathione reductase (GR) was investigated in stationary phase Saccharomyces cerevisiae during menadione-induced oxidative stress. Both GR and Cu,ZnSOD mRNA steady state levels increased, reaching a plateau at about 90 min exposure to menadione. GR mRNA induction was higher than that of Cu,ZnSOD (about 14-fold and 9-fold after 90 min, respectively). A different pattern of response was obtained for MnSOD mRNA, with a peak at about 15 min (about 8-fold higher) followed by a decrease to a plateau approximately 4-fold higher than the control value. However, these increased mRNA levels did not result in increased protein levels and activities of these enzymes. Furthermore, exposure to menadione decreased MnSOD activity to half its value, indicating that the enzyme is partially inactivated due to oxidative damage. Cu,ZnSOD protein levels were increased 2-fold, but MnSOD protein levels were unchanged after exposure to menadione in the presence of the proteolysis inhibitor phenylmethylsulfonyl fluoride. These results indicate that the rates of Cu,ZnSOD synthesis and proteolysis are increased, while the rates of MnSOD synthesis and proteolysis are unchanged by exposure to menadione. Also, the translational efficiency for both enzymes is probably decreased, since increases in protein levels when proteolysis is inhibited do not reflect the increases in mRNA levels. Our results indicate that oxidative stress modifies MnSOD, Cu,ZnSOD, and GR gene expression in a complex way, not only at the transcription level but also at the post-transcriptional, translational, and post-translational levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone. We have used siRNA to silence TBCA expression in HeLa and MCF-7 mammalian cell lines. TBCA is essential for cell viability and its knockdown produces a decrease in the amount of soluble tubulin, modifications in microtubules and G1 cell cycle arrest. In MCF-7 cells, cell death was preceded by a change in cell shape resembling differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction - Obesity became a major public health problem as a result of its increasing prevalence worldwide. Paraoxonase-1 (PON1) is an esterase able to protect membranes and lipoproteins from oxidative modifications. At the PON1 gene, several polymorphisms in the promoter and coding regions have been identified. The aims of this study were i) to assess PON1 L55M and Q192R polymorphisms as a risk factor for obesity in women; ii) to compare PON1 activity according to the expression of each allele in L55M and Q192R polymorphisms; iii) to compare PON1 activity between obese and normal-weight women. Materials and methods - We studied 75 healthy (35.9±8.2 years) and 81 obese women (34.3±8.2 years). Inclusion criteria for obese subjects were body mass index ≥30 kg/m2 and absence of inflammatory/neoplasic conditions or kidney/hepatic dysfunction. The two PON1 polymorphisms were assessed by real-time PCR with TaqMan probes. PON1 enzymatic activity was assessed by spectrophotometric methods, using paraoxon as a substrate. Results - No significant differences were found for PON1 activity between normal and obese women. Nevertheless, PON1 activity was greater (P<0.01) for the RR genotype (in Q192R polymorphism) and for the LL genotype (in L55M polymorphism). The frequency of allele R of Q192R polymorphism was significantly higher in obese women (P<0.05) and was associated with an increased risk of obesity (odds ratio=2.0 – 95% confidence interval (1.04; 3.87)). Conclusion - 55M and Q192R polymorphisms influence PON1 activity. The allele R of the Q192R polymorphism is associated with an increased risk for development of obesity among Portuguese Caucasian premenopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and Objectives - Paraoxonases may exert anti-atherogenic action by reducing lipid peroxidation. Previous studies examined associations between polymorphisms in the paraoxonase 1 (PON1) gene and development of coronary artery disease (CAD), with inconsistent results. Given the similarities in clinical and pathophysiological risk factors of CAD and calcific aortic valve stenosis (CAVS), we postulated a link between PON1 alleles and CAVS progression. Methods - We investigated the association between PON1 55 and 192 single nucleotide polymorphisms (SNPs), their enzyme activity, and CAVS progression assessed by aortic valve area and transvalvular peak velocity in 67 consecutive patients with moderate CAVS and 251 healthy controls. Results - PON1 paraoxonase activity was higher in CAVS patients (P<0.001). The PON1 genotype Q192R SNP (P=0.03) and variant allele (R192) (P=0.01) frequencies differed between CAVS patients and controls. Significant association existed between PON1 enzyme activity, phenotypic effects of PON1 192 genotype polymorphisms, and CAVS progression, but not between PON1 55 and high-density lipoprotein (P=0.44) or low-density lipoprotein cholesterol (P=0.12), between 192 genotype and high-density lipoprotein (P=0.24) or low-density lipoprotein cholesterol (P=0.52). Conclusion - The PON1 genotype Q192R SNP has an important effect on CAVS disease progression. This study helps outline a genotype-phenotype relationship for PON1 in this unique population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The histone deacetylase inhibitors sodium butyrate (NaBu) and trichostatin A (TSA) exhibit anti-proliferative activity by causing cell cycle arrest and apoptosis. The mechanisms by which NaBu and TSA cause apoptosis and cell cycle arrest are not yet completely clarified, although these agents are known to modulate the expression of several genes including cell-cycle- and apoptosis-related genes. The enzymes involved in the process of translation have important roles in controlling cell growth and apoptosis, and several of these translation factors have been described as having a causal role in the development of cancer. The expression patterns of the translation mechanism, namely of the elongation factors eEF1A1 and eEF1A2, and of the termination factors eRF1 and eRF3, were studied in the breast cancer cell line MCF-7 by real-time quantitative reverse transcription-polymerase chain reaction after a 24-h treatment with NaBu and TSA. NaBu induced inhibition of translation factors' transcription, whereas TSA caused an increase in mRNA levels. Thus, these two agents may modulate the expression of translation factors through different pathways. We propose that the inhibition caused by NaBu may, in part, be responsible for the cell cycle arrest and apoptosis induced by this agent in MCF-7 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six open reading frames (ORFs) located on chromosome VII of Saccharomyces cerevisiae (YGR205w, YGR210c, YGR211w, YGR241c, YGR243w and YGR244c) were disrupted in two different genetic backgrounds using short-flanking homology (SFH) gene replacement. Sporulation and tetrad analysis showed that YGR211w, recently identified as the yeast ZPR1 gene, is an essential gene. The other five genes are non-essential, and no phenotypes could be associated to their inactivation. Two of these genes have recently been further characterized: YGR241c (YAP1802) encodes a yeast adaptor protein and YGR244c (LSC2) encodes the b-subunit of the succinyl-CoA ligase. For each ORF, a replacement cassette with long flanking regions homologous to the target locus was cloned in pUG7, and the cognate wild-type gene was cloned in pRS416.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 9.9 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains four open reading frames (ORFs) longer than 100 amino acids. One gene, PFK1, has already been cloned and sequenced and the other one is the probable yeast gene coding for the beta-subunit of the succinyl-CoA synthetase. The two remaining ORFs share homology with the deduced amino acid sequence (and their physical arrangement is similar to that) of the YHR161c and YHR162w ORFs from chromosome VIII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 5-unit polyubiquitin gene, TTU3, was isolated from a T. thermophila genomic library and sequenced. This gene presents an extra triplet coding for Phe, a AGAGA motif and a putative HSE element in its 5'-non-coding region. The ubiquitin gene expression in this ciliate was investigated by Northern blot hybridization in conjugating cells or cells under stress conditions. Exponentially growing cells express two ubiquitin mRNAs of 0.75 and 1.8 kb and a new species of 1.4 kb is induced under hyperthermic stress. During sexual reproduction of the cells (conjugation) the 1.8-kb mRNA is still transcribed whereas the steady-state population of the 0.75 mRNA transcripts is strongly diminished. Southern blot analysis suggests that ubiquitin in T. thermophila constitutes a large family of about ten members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the cloning and the characterization of the T. pyriformis CCT eta gene (TpCCT eta) and also a partial sequence of the corresponding T. thermophila gene (TtCCT eta). The TpCCt eta gene encodes a protein sharing a 60.3% identity with the mouse CCT eta. We have studied the expression of these genes in Tetrahymena exponentially growing cells, cells regenerating their cilia for different periods and during different stages of the cell sexual reproduction. These genes have similar patterns of expression to those of the previously identified TpCCt gamma gene. Indeed, the Tetrahymena CCT eta and CCT gamma genes are up-regulated at 60-120 min of cilia recovery, and in conjugation when vegetative growth was resumed and cell division took place. Our results seem to indicate that both CCT subunits play an important role in the biogenesis of the newly synthesized cilia of Tetrahymena and during its cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ni-II and Zn-II complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))(3), pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu-II complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N-3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))-(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, H-1 and C-13{H-1} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(Bu4N)-Bu-n](Tpms(Ph)) (7), the tatter obtained upon Li+ replacement by [(Bu4N)-Bu-n](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn-II and Cu-II complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding beta-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni-II complex 2 only shows a modest catalytic activity.