3 resultados para Kahn, Ida
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
O cinema português não tem junto do público nacional o mesmo apelo de outros tempos. Hoje a oferta é maior e o cinema norte-americano parece ter invadido as salas de cinema portuguesas. Hoje o cinema português está mais dependente do financiamento público, a ida às salas de cinema para ver produções nacionais é parca quando comparada com afluência para ver filmes de outros países e a produção nacional nem sempre passa nas salas nacionais. Sob este cenário, o trabalho aqui apresentado pretende responder ao que parece ser uma necessidade de desenvolvimento e de crescimento do sector usando como ferramenta as relações públicas. Este trabalho consiste, assim, numa aplicação prática das técnicas de relações públicas para construir uma estratégia de comunicação que, por um lado, promova o cinema português e que, por outro, fortaleça o sector.
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.