11 resultados para KINETIC STABILITY
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Intact cells from Pseudomonas aeruginosa strain L10 containing amidase were used as biocatalysts both free and immobilized in a reverse micellar system. The apparent kinetic constants for the transamidation reaction in hydroxamic acids synthesis, were determined using substrates such as aliphatic, amino acid and aromatic amides and esters, in both media. In reverse micelles, K-m values decreased 2-7 fold relatively to the free biocatalyst using as substrates acetamide, acrylamide, propionamide and glycinamide ethyl ester. We have concluded that overall the affinity of the biocatalyst to each substrate increases when reactions are performed in the reversed micellar system as opposed to the buffer system. The immobilized biocatalyst in general, exhibits higher stability and faster rates of reactions at lower substrates concentration relatively to the free form, which is advantageous. Additionally, the immobilization revealed to be suitable for obtaining the highest yields of hydroxamic acids derivatives, in some cases higher than 80%. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Sliding mode controllers for power converters usually employ hysteresis comparators to directly generate the power semiconductors switching states. This paper presents a new sliding mode modulator based on the direct implementation of the sliding mode stability condition, which for multilevel power converters shows advantages, as branch equalized switching frequencies and less distortion on the ac currents when operating near the rated converter power. The new sliding mode multilevel modulator is used to control a three-phase multilevel converter, operated as a reactive power compensator (STATCOM), implementing the stability condition in a digital signal processing system. The performance of this new sliding mode modulator is compared with a multilevel modulator based on hysteresis comparators. Simulation and experimental results are presented in order to highlight the system operation and control robustness.
Resumo:
The present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.
Resumo:
Captopril, an inhibitor of angiotensin converting enzyme (ACE), is used to treat medical conditions like hypertension and heart failure, and it is usually administered in tablet form for adults. Since this dosage form is not recommended for infants and children up to 6 years, hospital pharmacies have to prepare liquid formulations for oral administration of captopril. Traditionally, concentration of captopril used in the formulations is 1mg/ml. The problem is that captopril is prone to oxidation, and its stability in solution is affected by pH, concentration of captopril, the presence of oxygen or metal ions. The influence of different formulation ingredients on the properties of physical and chemical stability of captopril in liquid preparations has been evaluated. Main of the study: to evaluate the stability of captopril for 30 days when formulated in a 1 mg/ml suspension adjuvanted with citric acid.
Resumo:
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
Resumo:
We show that in two Higgs doublet models at tree-level the potential minimum preserving electric charge and CP symmetries, when it exists, is the global one. Furthermore, we derived a very simple condition, involving only the coefficients of the quartic terms of the potential, that guarantees spontaneous CP breaking. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
To study luminescence, reflectance, and color stability of dental composites and ceramics. Materials and Methods: IPS e.max, IPS Classic, Gradia, and Sinfony materials were tested, both unpolished (as-cast) and polished specimens. Coffee, tea, red wine, and distilled water (control) were used as staining drinks. Disk-shaped specimens were soaked in the staining drinks for up to 5 days. Color was measured by a colorimeter. Fluorescence was recorded using a spectrofluorometer, in the front-face geometry. Time-resolved fluorescence spectra were recorded using a laser nanosecond spectrofluorometer. Results: The exposure of the examined dental materials to staining drinks caused changes in color of the composites and ceramics, with the polished specimens exhibiting significantly lower color changes as compared to unpolished specimens. Composites exhibited lower color stability as compared to ceramic materials. Water also caused perceptible color changes in most materials. The materials tested demonstrated significantly different initial luminescence intensities. Upon exposure to staining drinks, luminescence became weaker by up to 40%, dependent on the drink and the material. Time-resolved luminescence spectra exhibited some red shift of the emission band at longer times, with the lifetimes in the range of tens of nanoseconds. Conclusions: Unpolished specimens with a more developed surface have lower color stability. Specimens stored in water develop some changes in their visual appearance. The presently proposed methods are effective in evaluating the luminescence of dental materials. Luminescence needs to be tested in addition to color, as the two characteristics are uncorrelated. It is important to further improve the color and luminescence stability of dental materials.
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
Three-dimensional (3D) nickel-copper (Ni-Cu) nanostructured foams were prepared by galvanostatic electrodeposition, on stainless steel substrates, using the dynamic hydrogen bubble template. These foams were tested as electrodes for the hydrogen evolution reaction (HER) in 8 M KOH solutions. Polarisation curves were obtained for the Ni-Cu foams and for a solid Ni electrode, in the 25-85 degrees C temperature range, and the main kinetic parameters were determined. It was observed that the 3D foams have higher catalytic activity than pure Ni. HER activation energies for the Ni-Cu foams were lower (34-36 kJ mol(-1)) than those calculated for the Ni electrode (62 kJ mol(-1)). The foams also presented high stability for HER, which makes them potentially attractive cathode materials for application in industrial alkaline electrolysers.
Resumo:
Motivated by the dark matter and the baryon asymmetry problems, we analyze a complex singlet extension of the Standard Model with a Z(2) symmetry (which provides a dark matter candidate). After a detailed two-loop calculation of the renormalization group equations for the new scalar sector, we study the radiative stability of the model up to a high energy scale (with the constraint that the 126 GeV Higgs boson found at the LHC is in the spectrum) and find it requires the existence of a new scalar state mixing with the Higgs with a mass larger than 140 GeV. This bound is not very sensitive to the cutoff scale as long as the latter is larger than 10(10) GeV. We then include all experimental and observational constraints/measurements from collider data, from dark matter direct detection experiments, and from the Planck satellite and in addition force stability at least up to the grand unified theory scale, to find that the lower bound is raised to about 170 GeV, while the dark matter particle must be heavier than about 50 GeV.