4 resultados para John E. Fogarty International Center for Advanced Study in the Health Sciences.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This work focuses on the study of flow and propagation of magma using rock magnetic analyses along sections across the thick Jurassic dyke of Foum-Zguid (Southern Morocco). Thermomagnetic data show that Ti-poor titanomagnetite is the main magnetic carrier. Petrographic analysis shows that the main Ti phase (ilmenite) occurs either as lamellae within spinel (center of the dyke) or as isolated grains (dyke margin). Bulk magnetic properties display distinct behavior according to the distance to the dyke margin; grain size of the main magnetic carrier decreases towards the center of the dyke, while the natural remanent magnetization and the bulk magnetic susceptibility increase. Only the magnetic susceptibility ellipsoid close to the dyke margin corresponds to that usually found in thin dykes, with the magnetic foliation sub parallel to dyke margins. Maximum principal axis is in most cases either parallel or perpendicular to the intersection between the planes of magnetic foliation and dyke wall. Moreover, when this axis is perpendicular to the intersection it is associated with a more oblate magnetic susceptibility ellipsoid shape, indicating the presence of complex magnetic fabrics. The studied magnetic properties show that, in this 100 m wide thick dyke, flow structures related with dyke propagation are only preserved close to the quickly cooled dyke margins.
Resumo:
Since industrialization and the formation of larger urban centers in the nineteenth century, pollution of the environment was always present in daily life in various ways, namely in the form of light. Light pollution can cause various consequences, both for humans and for their ecosystem, producing effects on environmental, social, economic and scientific level. In Portugal, the lighting is responsible for 3% of total electricity consumption, energy costs are in some cases more than 50% towards the costs incurred by municipalities with energy, checking-in recent years a trend similar to that improvement of illumination levels in the region (about 4 to 5% per year). Proper use of lighting brings many benefits both to the citizen and environment, since greater energy efficiency can contribute to reducing CO2 emissions, energy costs, as well as to decrease the use of resources not-renewable and/or contamination of renewable resources, which can occurs in the process of obtaining electricity. The present study has a main goal to analyze the illuminance levels associated to the public lighting of the village of Vialonga, Vila Franca de Xira (Portugal), to verify if it is efficient. The aim is also to relate the efficiency of street lighting with the existence of light pollution.
Resumo:
: In this work we derive an analytical solution given by Bessel series to the transient and one-dimensional (1D) bioheat transfer equation in a multi-layer region with spatially dependent heat sources. Each region represents an independent biological tissue characterized by temperature-invariant physiological parameters and a linearly temperature dependent metabolic heat generation. Moreover, 1D Cartesian, cylindrical or spherical coordinates are used to define the geometry and temperature boundary conditions of first, second and third kinds are assumed at the inner and outer surfaces. We present two examples of clinical applications for the developed solution. In the first one, we investigate two different heat source terms to simulate the heating in a tumor and its surrounding tissue, induced during a magnetic fluid hyperthermia technique used for cancer treatment. To obtain an accurate analytical solution, we determine the error associated with the truncated Bessel series that defines the transient solution. In the second application, we explore the potential of this model to study the effect of different environmental conditions in a multi-layered human head model (brain, bone and scalp). The convective heat transfer effect of a large blood vessel located inside the brain is also investigated. The results are further compared with a numerical solution obtained by the Finite Element Method and computed with COMSOL Multi-physics v4.1 (c). (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Background - According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods - A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results - Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions - The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed workers.