8 resultados para Indigo Sapphire
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.
Resumo:
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO2 thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 degrees C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.