2 resultados para In Silico Mapping

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a methodology which enables the graphical representation, in a bi-dimensional Euclidean space, of atmospheric pollutants emissions in European countries. This approach relies on the use of Multidimensional Unfolding (MDU), an exploratory multivariate data analysis technique. This technique illustrates both the relationships between the emitted gases and the gases and their geographical origins. The main contribution of this work concerns the evaluation of MDU solutions. We use simulated data to define thresholds for the model fitting measures, allowing the MDU output quality evaluation. The quality assessment of the model adjustment is thus carried out as a step before interpretation of the gas types and geographical origins results. The MDU maps analysis generates useful insights, with an immediate substantive result and enables the formulation of hypotheses for further analysis and modeling.