6 resultados para Immune response.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.
Resumo:
Exposure to certain fungi can cause human illness. Fungi cause adverse human health effects through three specific mechanisms: generation of a harmful immune response (e.g., allergy or hypersensitivity pneumonitis); direct infection by the fungal organism; by toxic-irritant effects from mold byproducts, such as mycotoxins. In Portugal there is an increasingly industry of large facilities that produce whole chickens for domestic consumption and only few investigations have reported on fungal contamination of the poultry litter. The material used for poultry litter is varied but normally can be constitute by: pine shavings; sawdust of eucalyptus; other types of wood; peanut; coffee; sugar cane; straw; hay; grass; paper processed. Litter is one of the most contributive factors to fungal contamination in poultries. Spreading litter is one of the tasks that normally involve higher exposure of the poultry workers to dust, fungi and their metabolites, such as VOC’s and mycotoxins. After being used and removed from poultries, litter is ploughed into agricultural soils, being this practice potentially dangerous for the soil environment, as well for both humans and animals. The goal of this study was to characterize litter’s fungal contamination and also to report the incidence of keratinophilic and toxigenic fungi.
Resumo:
Although vaccination is still the most cost-effective strategy for tuberculosis control, there is an urgent need for an improved vaccine. Current BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis, the most prevalent form of the disease. Targeting nasal mucosa, Mycobacterium tuberculosis infection site, will allow a simpler, less prone to risk of infection and more effective immunization against disease. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as carrier and as adjuvant, improving the elicited immune response. In this study, BCG was encapsulated in alginate and chitosan microparticles, via a mild ionotropic gelation procedure with sodium tripolyphosphate as a counterion. The particulate system developed shows effective modulation of BCG surface physicochemical properties, suitable for mucosal immunization. Intracellular uptake was confirmed by effective transfection of human macrophage cell lines.
Resumo:
Immunisation against M. tuberculosis with current available BCG vaccine lacks efficacy in preventing adult pulmonary tuberculosis. Targeting nasal mucosa is an attractive option for a more effective immunization. The delivery of BCG via the intranasal route involves overcoming barriers such as crossing the physical barrier imposed by the mucus layer and ciliar remotion, cellular uptake and intracellular trafficking by antigen presenting cells. Due to its biodegradable, immunogenic and mucoadhesive properties, chitosan particulate delivery systems can act both as vaccine carrier and adjuvant, improving the elicited immune response. In this study, different combinations of Chitosan/Alginate/TPP microparticles with BCG were produced as vaccine systems. The developed microparticle system successfully modulates BCG surface physicochemical properties and promotes effective intracellular uptake by human macrophage cell lines Preliminary immune responses were evaluated after s.c. and intranasal immunisation of BALB/c mice. BCG vaccination successfully stimulated the segregation of IgG2a and IgG1, where intranasal immunisation with chitosan/alginate particulate system efficiently elicited a more equilibrated cellular/humoral immune response.
Resumo:
Exposure to certain fungi (molds) can cause human illness by 3 specific mechanisms: generation of a harmful immune response, direct infection by the organism or/and toxic-irritant effects from mold byproducts. Moulds are considered central elements in daily exposure of poultry workers and can be the cause of an increased risk of occupational respiratory diseases, like allergic and non-allergic rhinitis and asthma.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.