21 resultados para Image data hiding

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plain radiography still accounts for the vast majority of imaging studies that are performed at multiple clinical instances. Digital detectors are now prominent in many imaging facilities and they are the main driving force towards filmless environments. There has been a working paradigm shift due to the functional separation of acquisition, visualization, and storage with deep impact in the imaging workflows. Moreover with direct digital detectors images are made available almost immediately. Digital radiology is now completely integrated in Picture Archiving and Communication System (PACS) environments governed by the Digital Imaging and Communications in Medicine (DICOM) standard. In this chapter a brief overview of PACS architectures and components is presented together with a necessarily brief account of the DICOM standard. Special focus is given to the DICOM digital radiology objects and how specific attributes may now be used to improve and increase the metadata repository associated with image data. Regular scrutiny of the metadata repository may serve as a valuable tool for improved, cost-effective, and multidimensional quality control procedures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introdução – A análise da forma ou morfometria de estruturas anatómicas, como o trato vocal, pode ser efetuada a partir de imagens bidimensionais (2D) como de aquisições volumétricas (3D) de ressonância magnética (RM). Esta técnica de imagem tem vindo a ter uma utilização crescente no estudo da produção da fala. Objetivos – Demonstrar como pode ser efetuada a morfometria do trato vocal a partir da imagem por ressonância magnética e ainda apresentar padrões anatómicos normais durante a produção das vogais [i a u] e dois padrões articulatórios patológicos em contexto simulado. Métodos – As imagens consideradas foram recolhidas a partir de aquisições 2D (Turbo Spin-eco) e 3D (Flash Gradiente-Eco) de RM em quatro sujeitos durante a produção das vogais em estudo; adicionalmente procedeu-se à avaliação de duas perturbações articulatórias usando o mesmo protocolo de RM. A morfometria do trato vocal foi extraída com recurso a técnicas manuais (para extração de cinco medidas articulatórias) e automáticas (para determinação de volumes) de processamento e análise de imagem. Resultados – Foi possível analisar todo o trato vocal, incluindo a posição e a forma dos articuladores, tendo por base cinco medidas descritivas do posicionamento destes órgãos durante a produção das vogais. A determinação destas medições permitiu identificar quais as estratégias mais comummente adotadas na produção de cada som, nomeadamente a postura articulatória e a variação de cada medida para cada um dos sujeitos em estudo. No contexto de voz falada intersujeitos, foi notória a variabilidade nos volumes estimados do trato vocal para cada som e, em especial, o aumento do volume do trato vocal na perturbação articulatória de sigmatismo. Conclusão – A imagem por RM é, sem dúvida, uma técnica promissora no estudo da fala, inócua, não-invasiva e que fornece informação fiável da morfometria do trato vocal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing. This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimized ZnO:Al/a-pin SixCl1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed. The LSP utilizes light induced depletion layers as detector and a laser beam for readout. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Experimental data reveal that the large optical gap and the low conductivity of the doped a-SixC1-x:H layers are responsible by an induced inversion layer at the illuminated interfaces which blocks the carrier collection. These insulator-like layers act as MIS gates preventing image smearing. The physical background of the LSP is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimized ZnO:Al/a-pin SixC1-x:H/Al configuration for the laser scanned photodiode (LSP) imaging detector is proposed and the read-out parameters improved. The effect of the sensing element structure, cell configuration and light source flux are investigated and correlated with the sensor output characteristics. Data reveals that for sensors with wide band gap doped layers an increase on the image signal optimized to the blue is achieved with a dynamic range of two orders of magnitude, a responsivity of 6 mA W-1 and a sensitivity of 17 muW cm(-2) at 530 nm. The main output characteristics such as image responsivity, resolution, linearity and dynamic range were analyzed under reverse, forward and short circuit modes. The results show that the sensor performance can be optimized in short circuit mode. A trade-off between the scan time and the required resolution is needed since the spot size limits the resolution due to the cross-talk between dark and illuminated regions leading to blurring effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To assess image quality using PGMI (perfect, good, moderate, inadequate) scale in digital mammography examinations acquired in DR systems. Identify the main failures and propose corrective actions. Evaluate the most typical breast density. Methods and Materials: Clinical image quality criteria were evaluated considering mammograms acquired in 13 DR systems and classified according to PGMI scale using the criteria described in European Commission guidelines for radiographers. The breast density was assessed according to ACR recommendations. The data were collected on the acquisition system monitor to reproduce the daily practice of the radiographer. Results: The image quality criteria were evaluated in 3044 images. The criteria were fully achieved in 41% of the images that were classified as P (perfect), 31 % of the images were classified as M (moderate), 20% G (good) and 9% I (inadequate). The main cause of inadequate image quality was absence of all breast tissue in the image, skin folders in the pectoral muscle and in the infra-mammary angle. The higher number of failures occurred in MLO projections (809 out of 1022). The most represented (36%) breast type was type 2 (25-50% glandular tissue). Conclusion: Incorrect radiographic technique was frequently detected suggesting potential training needs and poor communication between the team members (radiographer and radiologists). Further correlations are necessary to identify the main causes for the failures, namely specific education and training in digital mammography and workload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Summarize all relevant findings in published literature regarding the potential dose reduction related to image quality using Sinogram-Affirmed Iterative Reconstruction (SAFIRE) compared to Filtered Back Projection (FBP). Background: Computed Tomography (CT) is one of the most used radiographic modalities in clinical practice providing high spatial and contrast resolution. However it also delivers a relatively high radiation dose to the patient. Reconstructing raw-data using Iterative Reconstruction (IR) algorithms has the potential to iteratively reduce image noise while maintaining or improving image quality of low dose standard FBP reconstructions. Nevertheless, long reconstruction times made IR unpractical for clinical use until recently. Siemens Medical developed a new IR algorithm called SAFIRE, which uses up to 5 different strength levels, and poses an alternative to the conventional IR with a significant reconstruction time reduction. Methods: MEDLINE, ScienceDirect and CINAHL databases were used for gathering literature. Eleven articles were included in this review (from 2012 to July 2014). Discussion: This narrative review summarizes the results of eleven articles (using studies on both patients and phantoms) and describes SAFIRE strengths for noise reduction in low dose acquisitions while providing acceptable image quality. Conclusion: Even though the results differ slightly, the literature gathered for this review suggests that the dose in current CT protocols can be reduced at least 50% while maintaining or improving image quality. There is however a lack of literature concerning paediatric population (with increased radiation sensitivity). Further studies should also assess the impact of SAFIRE on diagnostic accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality. Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT. Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOM PERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale. Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3 and higher. Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.