3 resultados para IN-SHELL

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diaphragm is a muscular membrane separating the abdominal and thoracic cavities, and its motion is directly linked to respiration. In this study, using data from a 59-year-old female cadaver obtained from the Visible Human Project, the diaphragm is reconstructed and, from the corresponding solid object, a shell finite element mesh is generated and used in several analyses performed with the ABAQUS 6.7 software. These analyses consider the direction of the muscle fibres and the incompressibility of the tissue. The constitutive model for the isotropic strain energy as well as the passive and active strain energy stored in the fibres is adapted from Humphrey's model for cardiac muscles. Furthermore, numerical results for the diaphragmatic floor under pressure and active contraction in normal and pathological cases are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a fiber made of a soft elastic material, encased in a stiff elastic shell (core-shell geometry). If the core and shell dimensions are mismatched, e.g., because the core shrinks while the shell does not, but the two remain attached, then an elastic instability is triggered whereby wrinkles may appear on the shell. The wrinkle orientation may be longitudinal (along the fiber axis), polar (along the fiber perimeter), or a mixture of both, depending on the fiber's geometrical and material parameters. Here we investigate under what conditions longitudinal or polar wrinkling will occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance.