24 resultados para Hybrid vehicle

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the aftermath of a large-scale disaster, agents' decisions derive from self-interested (e.g. survival), common-good (e.g. victims' rescue) and teamwork (e.g. fire extinction) motivations. However, current decision-theoretic models are either purely individual or purely collective and find it difficult to deal with motivational attitudes; on the other hand, mental-state based models find it difficult to deal with uncertainty. We propose a hybrid, CvI-JI, approach that combines: i) collective 'versus' individual (CvI) decisions, founded on the Markov decision process (MDP) quantitative evaluation of joint-actions, and ii)joint-intentions (JI) formulation of teamwork, founded on the belief-desire-intention (BDI) architecture of general mental-state based reasoning. The CvI-JI evaluation explores the performance's improvement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an integrated system for vehicle classification. This system aims to classify vehicles using different approaches: 1) based on the height of the first axle and_the number of axles; 2) based on volumetric measurements and; 3) based on features extracted from the captured image of the vehicle. The system uses a laser sensor for measurements and a set of image analysis algorithms to compute some visual features. By combining different classification methods, it is shown that the system improves its accuracy and robustness, enabling its usage in more difficult environments satisfying the proposed requirements established by the Portuguese motorway contractor BRISA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures, based on intelligent process. Due to the electrical power distribution network limitation and absence of smart meter devices, Electric Vehicles charging should be performed in a balanced way, taking into account past experience, weather information based on data mining, and simulation approaches. In order to allow information exchange and to help user mobility, it was also created a mobile application to assist the EV driver on these processes. This proposed Smart ElectricVehicle Charging System uses Vehicle-to-Grid (V2G) technology, in order to connect Electric Vehicles and also renewable energy sources to Smart Grids (SG). This system also explores the new paradigm of Electrical Markets (EM), with deregulation of electricity production and use, in order to obtain the best conditions for commercializing electrical energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric vehicles (EV) offer a great potential to address the integration of renewable energy sources (RES) in the power grid, and thus reduce the dependence on oil as well as the greenhouse gases (GHG) emissions. The high share of wind energy in the Portuguese energy mix expected for 2020 can led to eventual curtailment, especially during the winter when high levels of hydro generation occur. In this paper a methodology based on a unit commitment and economic dispatch is implemented, and a hydro-thermal dispatch is performed in order to evaluate the impact of the EVs integration into the grid. Results show that the considered 10 % penetration of EVs in the Portuguese fleet would increase load in 3 % and would not integrate a significant amount of wind energy because curtailment is already reduced in the absence of EVs. According to the results, the EV is charged mostly with thermal generation and the associated emissions are much higher than if they were calculated based on the generation mix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a proposal for an automatic vehicle detection and classification (AVDC) system. The proposed AVDC should classify vehicles accordingly to the Portuguese legislation (vehicle height over the first axel and number of axels), and should also support profile based classification. The AVDC should also fulfill the needs of the Portuguese motorway operator, Brisa. For the classification based on the profile we propose:he use of Eigenprofiles, a technique based on Principal Components Analysis. The system should also support multi-lane free flow for future integration in this kind of environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of hybrid polyploid vertebrates, their viability and their perpetuation over evolutionary time have always been questions of great interest. However, little is known about the impact of hybridization and polyploidization on the regulatory networks that guarantee the appropriate quantitative and qualitative gene expression programme. The Squalius alburnoides complex of hybrid fish is an attractive system to address these questions, as it includes a wide variety of diploid and polyploid forms, and intricate systems of genetic exchange. Through the study of genome-specific allele expression of seven housekeeping and tissue-specific genes, we found that a gene copy silencing mechanism of dosage compensation exists throughout the distribution range of the complex. Here we show that the allele-specific patterns of silencing vary within the complex, according to the geographical origin and the type of genome involved in the hybridization process. In southern populations, triploids of S. alburnoides show an overall tendency for silencing the allele from the minority genome, while northern population polyploids exhibit preferential biallelic gene expression patterns, irrespective of genomic composition. The present findings further suggest that gene copy silencing and variable expression of specific allele combinations may be important processes in vertebrate polyploid evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Master Thesis in Mechanical Engineering field of Maintenance and Production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.