37 resultados para High-flux
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
In this work we report on the structure and magnetic and electrical transport properties of CrO2 films deposited onto (0001) sapphire by atmospheric pressure (AP)CVD from a CrO3 precursor. Films are grown within a broad range of deposition temperatures, from 320 to 410 degrees C, and oxygen carrier gas flow rates of 50-500 seem, showing that it is viable to grow highly oriented a-axis CrO2 films at temperatures as low as 330 degrees C i.e., 60-70 degrees C lower than is reported in published data for the same chemical system. Depending on the experimental conditions, growth kinetic regimes dominated either by surface reaction or by mass-transport mechanisms are identified. The growth of a Cr2O3 interfacial layer as an intrinsic feature of the deposition process is studied and discussed. Films synthesized at 330 degrees C keep the same high quality magnetic and transport properties as those deposited at higher temperatures.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.
Resumo:
The present work reports on the practical cooperation between two Universities from Hungary and Portugal. Students from Portugal are remotely accessing an experimental facility, which is physically in Hungary. The cooperation among these Higher Education establishments allowed the development and testing of a Remote Laboratory at the BME. This paper reports on the characteristics and initial testing of the Thermocouples Rise Time Measurement System and provides information on development and students' feedback.
Resumo:
We compare the magnetic field at the centre and the self-magnetic flux through a current-carrying circular loop, with those obtained for current-carrying polygons with the same perimeter. As the magnetic field diverges at the position of the wires, we compare the self-fluxes utilizing several regularization procedures. The calculation is best performed utilizing the vector potential, thus highlighting its usefulness in practical applications. Our analysis answers some of the intuition challenges students face when they encounter a related simple textbook example. These results can be applied directly to the determination of mutual inductances in a variety of situations.
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.
Resumo:
Multilevel power converters have been introduced as the solution for high-power high-voltage switching applications where they have well-known advantages. Recently, full back-to-back connected multilevel neutral point diode clamped converters (NPC converter) have been used inhigh-voltage direct current (HVDC) transmission systems. Bipolar-connected back-to-back NPC converters have advantages in long-distance HVDCtransmission systems over the full back-to-back connection, but greater difficulty to balance the dc capacitor voltage divider on both sending and receiving end NPC converters. This study shows that power flow control and dc capacitor voltage balancing are feasible using fast optimum-predictive-based controllers in HVDC systems using bipolar back-to-back-connected five-level NPC multilevel converters. For both converter sides, the control strategytakes in account active and reactive power, which establishes ac grid currents in both ends, and guarantees the balancing of dc bus capacitor voltages inboth NPC converters. Additionally, the semiconductor switching frequency is minimised to reduce switching losses. The performance and robustness of the new fast predictive control strategy, and its capability to solve the DC capacitor voltage balancing problem of bipolar-connected back-to-back NPCconverters are evaluated.
Resumo:
The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The top velocity of high-speed trains is generally limited by the ability to supply the proper amount of energy through the pantograph-catenary interface. The deterioration of this interaction can lead to the loss of contact, which interrupts the energy supply and originates arcing between the pantograph and the catenary, or to excessive contact forces that promote wear between the contacting elements. Another important issue is assessing on how the front pantograph influences the dynamic performance of the rear one in trainsets with two pantographs. In this work, the track and environmental conditions influence on the pantograph-catenary is addressed, with particular emphasis in the multiple pantograph operations. These studies are performed for high speed trains running at 300 km/h with relation to the separation between pantographs. Such studies contribute to identify the service conditions and the external factors influencing the contact quality on the overhead system. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Purpose: The most recent Varian® micro multileaf collimator(MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRCMonte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian® Trilogy® (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. The HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g cm− 3 and an overall leakage of about 1.1 ± 0.03%. The discrepancies between the film measured and simulated closed and blocked fields are below 2% and 8%, respectively. Other measurements were performed for alternated leaf patterns and the agreement is satisfactory (to within 4%). The dynamic mode for this MLC was implemented and the discrepancies between film measurements and simulations are within 4%. Conclusions: The Varian® Trilogy® (2300 C/D) linear accelerator including the HD120 MLC was successfully modeled and simulated using the Monte CarloBEAMNRC code by developing an independent CM, the HDMLC CM, either in static and dynamic modes.
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10–5 per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.