6 resultados para High temperatures.
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Tris(2-ethylhexyl) trimellitate (TOTM) was recently suggested as a reference fluid for industrial use associated with high viscosity at elevated temperature and pressure. Viscosity and density data have already been published on one sample covering the temperature range (303-373) K and at pressures up to about 65 MPa. The viscosity covered a range from about (9 to 460) mPa s. In the present article we study several other characteristics of TOTM that must be available if it were to be adopted as a standard. First, we present values for the viscosity and density obtained with a different sample of TOTM to examine the important feature of consistency among different samples. Vibrating-wire viscosity measurements were performed at pressures from (5 to 100) MPa, along 6 isotherms between (303 and 373) K. Density measurements were carried out from (293 to 373) K up to 68 MPa, along 4 isotherms, using an Anton Paar DMA HP vibrating U-tube densimeter. Secondly, we report a study of the effect of water contamination on the viscosity of TOTM, performed using an Ubbelhode viscometer under atmospheric pressure. Finally, in order to support the use of TOTM as a reference liquid for the calibration of capillary viscometers, values of its surface tension, obtained by the pendant drop method, are provided. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Coastal low-level jets (CLLJ) are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind). This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF) mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989-2007). The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.
Resumo:
Mestrado em Segurança e Higiene no Trabalho.
Resumo:
The cleaning of syngas is one of the most important challenges in the development of technologies based on gasification of biomass. Tar is an undesired byproduct because, once condensed, it can cause fouling and plugging and damage the downstream equipment. Thermochemical methods for tar destruction, which include catalytic cracking and thermal cracking, are intrinsically attractive because they are energetically efficient and no movable parts are required nor byproducts are produced. The main difficulty with these methods is the tendency for tar to polymerize at high temperatures. An alternative to tar removal is the complete combustion of the syngas in a porous burner directly as it leaves the particle capture system. In this context, the main aim of this study is to evaluate the destruction of the tar present in the syngas from biomass gasification by combustion in porous media. A gas mixture was used to emulate the syngas, which included toluene as a tar surrogate. Initially, CHEMKIN was used to assess the potential of the proposed solution. The calculations revealed the complete destruction of the tar surrogate for a wide range of operating conditions and indicated that the most important reactions in the toluene conversion are C6H5CH3 + OH <-> C6H5CH2 + H2O, C6H5CH3 + OH <-> C6H4CH3 + H2O, and C6H5CH3 + O <-> OC6H4CH3 + H and that the formation of toluene can occur through C6H5CH2 + H <-> C6H5CH3. Subsequently, experimental tests were performed in a porous burner fired with pure methane and syngas for two equivalence ratios and three flow velocities. In these tests, the toluene concentration in the syngas varied from 50 to 200 g/Nm(3). In line with the CHEMKIN calculations, the results revealed that toluene was almost completely destroyed for all tested conditions and that the process did not affect the performance of the porous burner regarding the emissions of CO, hydrocarbons, and NOx.
Resumo:
No literature data above atmospheric pressure could be found for the viscosity of TOTIVI. As a consequence, the present viscosity results could only be compared upon extrapolation of the vibrating wire data to 0.1 MPa. Independent viscosity measurements were performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results, extrapolated by means of the above mentioned correlation. The two data sets agree within +/- 1%, which is commensurate with the mutual uncertainty of the experimental methods. Comparisons of the literature data obtained at atmospheric pressure with the present extrapolated vibrating-wire viscosity measurements have shown an agreement within +/- 2% for temperatures up to 339 K and within +/- 3.3% for temperatures up to 368 K. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In Part I of the present work we describe the viscosity measurements performed on tris(2-ethylhexyl) trimellitate or 1,2,4-benzenetricarboxylic acid, tris(2-ethylhexyl) ester (TOTM) up to 65 MPa and at six temperatures from (303 to 373)K, using a new vibrating-wire instrument. The main aim is to contribute to the proposal of that liquid as a potential reference fluid for high viscosity, high pressure and high temperature. The present Part II is dedicated to report the density measurements of TOTM necessary, not only to compute the viscosity data presented in Part I, but also as complementary data for the mentioned proposal. The present density measurements were obtained using a vibrating U-tube densimeter, model DMA HP, using model DMA5000 as a reading unit, both instruments from Anton Paar GmbH. The measurements were performed along five isotherms from (293 to 373)K and at eleven different pressures up to 68 MPa. As far as the authors are aware, the viscosity and density results are the first, above atmospheric pressure, to be published for TOTM. Due to TOTM's high viscosity, its density data were corrected for the viscosity effect on the U-tube density measurements. This effect was estimated using two Newtonian viscosity standard liquids, 20 AW and 200 GW. The density data were correlated with temperature and pressure using a modified Tait equation. The expanded uncertainty of the present density results is estimated as +/- 0.2% at a 95% confidence level. Those results were correlated with temperature and pressure by a modified Tait equation, with deviations within +/- 0.25%. Furthermore, the isothermal compressibility, K-T, and the isobaric thermal expansivity, alpha(p), were obtained by derivation of the modified Tait equation used for correlating the density data. The corresponding uncertainties, at a 95% confidence level, are estimated to be less than +/- 1.5% and +/- 1.2%, respectively. No isobaric thermal expansivity and isothermal compressibility for TOTM were found in the literature. (C) 2014 Elsevier B.V. All rights reserved.