12 resultados para High Field Mri

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed analysis of fabrics of the chilled margin of a thick dolerite dyke (Foum Zguid dyke, Southern Morocco) was performed in order to better understand the development of sub-fabrics during dyke emplacement and cooling. AMS data were complemented with measurements of paramagnetic and ferrimagnetic fabrics (measured with high field torque magnetometer), neutron texture and microstructural analyses. The ferrimagnetic and AMS fabrics are similar, indicating that the ferrimagnetic minerals dominate the AMS signal. The paramagnetic fabric is different from the previous ones. Based on the crystallization timing of the different mineralogical phases, the paramagnetic fabric appears related to the upward flow, while the ferrimagnetic fabric rather reflects the late-stage of dyke emplacement and cooling stresses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabView code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of ionizing radiation for medical purposes emphasizes the concern about safety and justification of using ionizing radiation. This is linked with the use of new and high-dose X-ray technology (particularly CT). According to the UNSCEAR 2010 Report the total number of diagnostic medical examinations (both medical and dental) is estimated to have risen from 2.4 billion (period 1991–1996) to 3.6 billion (period 1997– 2008) - a marked increase in collective doses. An appropriate use of technology aiming diagnostic or therapy and respecting the ALARA principle is a mandatory requisite to safely perform any radiological procedure. Radiation protection is thus, a concern of all specialists in the radiology field ( radiologists, radiographers, medical physicists, among other professional groups). The importance of education and training of these professionals in reducing patients’ doses while maintaining the desired level of quality in medical exposures, as well as precise therapeutic treatments is well recognized. Education, training and continuing professional development (CPD) constitute a triad pointing towards the radiographers’ development of competences in the radiation protection field. This presentation excludes the radiographer role and competences in the fields of ultrasonography and MRI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The most recent Varian® micro multileaf collimator(MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRCMonte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian® Trilogy® (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. The HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g cm− 3 and an overall leakage of about 1.1 ± 0.03%. The discrepancies between the film measured and simulated closed and blocked fields are below 2% and 8%, respectively. Other measurements were performed for alternated leaf patterns and the agreement is satisfactory (to within 4%). The dynamic mode for this MLC was implemented and the discrepancies between film measurements and simulations are within 4%. Conclusions: The Varian® Trilogy® (2300 C/D) linear accelerator including the HD120 MLC was successfully modeled and simulated using the Monte CarloBEAMNRC code by developing an independent CM, the HDMLC CM, either in static and dynamic modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering that recent european high-speed railway system has a traction power system of kV 50 Hz, which causes electromagnetic emission for the outside world, it is important to dimension the railway system emissions, using a frequency/distance dependent propagation model. This paper presents an enhanced theoretical model for VLF to UHF propagation, railway system oriented. It introduces the near field approach (crucial in low frequency propagation) and also considers the source characteristics and type of measuring antenna. Simulations are presented, and comparisons are set with earlier far field models. Using the developed model, a real case study was performed in partnership with Refer Telecom (portuguese telecom operator for railways). The new propagation model was used in order to predict the future high-speed railway electromagnetic emissions in the Lisbon north track. The results show the model's prediction capabilities and also its applicability to realistic scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most common problems of rotating machinery is the rotor unbalance. The effects of rotor unbalance can vary from the malfunction of certain equipment to diseases related to the exposure to high vibration levels. However, the balancing procedure is known, it is mandatory to have qualified technicians to perform it. In this sense, the use of virtual balancing experiments is of great interest. The present demo is dedicated to present two different balancing simulators, which can be explored in conjunction, as they have complementary outputs. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients scheduled for a magnetic resonance imaging (MRI) scan sometimes require screening for ferromagnetic Intra Orbital Foreign Bodies (IOFBs). To assess this, they are required to fill out a screening protocol questionnaire before their scan. If it is established that a patient is at high risk, radiographic imaging is necessary. This review examines literature to evaluate which imaging modality should be used to screen for IOFBs, considering that the eye is highly sensitive to ionising radiation and any dose should be minimised. Method: Several websites and books were searched for information, these were as follows: PubMed, Science Direct, Web of Knowledge and Google Scholar. The terms searched related to IOFB, Ionising radiation, Magnetic Resonance Imaging Safety, Image Quality, Effective Dose, Orbits and X-ray. Thirty five articles were found, several were rejected due to age or irrelevance; twenty eight were eventually accepted. Results: There are several imaging techniques that can be used. Some articles investigated the use of ultrasound for investigation of ferromagnetic IOFBs of the eye and others discussed using Computed Tomography (CT) and X-ray. Some gaps in the literature were identified, mainly that there are no articles which discuss the lowest effective dose while having adequate image quality for orbital imaging. Conclusion: X-ray is the best method to identify IOFBs. The only problem is that there is no research which highlights exposure factors that maintain sufficient image quality for viewing IOFBs and keep the effective dose to the eye As Low As Reasonably Achievable (ALARA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additional apple juice extraction with pulsed electric field pretreated apple cubes towards control samples is evaluated. Monopolar and bipolar shaped pulses are compared and their effect is studied with variation of electric field, pulse width and number of pulses. Variation of electric field strength is ranged from 100 V/cm to 1300 V/cm, pulse width from 20 mu s to 300 mu s and number of pulses from 10 to 200, at frequency of 200Hz. Two pulse trains separated by 1 second are applied to all samples. Bipolar pulses showed higher apple juice yields with all studied parameters. Calculation of specific energies consumed was assessed and a threshold where higher energy inputs do not increase juice yield is found for a number of used parameters. Qualitative parameters of total soluble matter (Brix) and absorbance at 390 nm wavelength were determined for each sample and results show that no substantial differences are found for PEF pre-treated and control samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.