6 resultados para Heuristic-driven biases

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência: CONTROLO’2012 - 16-18 July 2012 - Funchal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on a PV system linked to the electric grid by power electronic converters, identification of the five parameters modeling for photovoltaic systems and the assessment of the shading effect. Normally, the technical information for photovoltaic panels is too restricted to identify the five parameters. An undemanding heuristic method is used to find the five parameters for photovoltaic systems, requiring only the open circuit, maximum power, and short circuit data. The I- V and the P- V curves for a monocrystalline, polycrystalline and amorphous photovoltaic systems are computed from the parameters identification and validated by comparison with experimental ones. Also, the I- V and the P- V curves under the effect of partial shading are obtained from those parameters. The modeling for the converters emulates the association of a DC-DC boost with a two-level power inverter in order to follow the performance of a testing commercial inverter employed on an experimental system. © 2015 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.