6 resultados para Health. Feature. Identification of Medicine Boxes

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 41 years of armed conflict (1961 to 2002) resulted in a poor development of the health care and education infrastructures, and forced the relocation of people to safer places, namely major urban cities like Luanda. This phase was characterized by typical demographic, nutritional and epidemiological profiles. With the end of this period Angola has been repeatedly ranked as one of the three fastest growing economies in the world, and along with the social stabilization and globalization, the country is facing the introduction of new medical technologies, improvement of health sys-tems and services, better access to them, and overall better quality of life. These changes could also be translating into socio-cultural, demographic and nutritional changes which in turn may leading to changes in the epidemiological profile of the country. Thus, the emergence of non-communicable diseases are likely to become an increasingly im-portant public health problem in Angola. Also, considering that several infectious diseases persist, our weakened health system will have to face a double burden. Thus, disease surveillance data on non-communicable diseases to determine their prevalence and impact, along with the major behavioural risk factors like consumption of tobacco, alcohol, diets and physical inactivity are urgently needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benefits of cardiac resynchronization therapy (CRT) in the health-related quality of life (HRQL) are largely demonstrated in selected patients with severe congestive heart failure (CHF). However, the differences between responders and non-responders, with regard to the effect of CRT in the various dimensions that constitute HRQL are still a matter of discussion. Objective: To evaluate the impact of CRT on the HRQL of patients with CHF refractory to optimal pharmacological therapy, within 6 months after CRT. Methods: 43 patients, submitted to successful implantation of CRT, were evaluated in hospital just before intervention and in the outpatient clinic within 6 months after CRT. HRQL was analyzed based on the Kansas City Cardiomyopathy Questionnaire (KCCQ). Patients were classified as super-responders (ejection fraction of left ventricle - LVEF - ≥45% post-CRT), n=15, responders (sustained improvement in functional class and LVEF increased by 15%), n=19, and non-responders (no clinical or LVEF improvement), n=9. Results: In the group of super-responders, CRT was associated with an improvement in HRQL for the various fields and sums assessed (ρ<0.05); in responders, CRT has been associated with an improvement of HRQL in the various fields and sums, except in the self-efficacy dimension (ρ<0.05); in non-responders, CRT was not associated with improvement of HRQL. Conclusion: In a population with severe CHF undergoing CRT, the patients with clinical and echocardiographic positive response, obtained a favorable impact in all dimensions of HRQL, while the group without response to CRT showed no improvement. These data reinforces the importance of HRQL as a multidimensional tool for assessment of benefits in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified an allelic deletion common region in the q26 region of chromosome 10 in endometrial carcinomas, which has been reported previously as a potential target of genetic alterations related to this neoplasia. An allelotyping analysis of 19 pairs of tumoral and non-tumoral samples was accomplished using seven microsatellite polymorphic markers mapping in the 10q26 chromosomal region. Loss of heterozygosity for one or more loci was detected in 29% of the endometrial carcinoma samples. The observed pattern of loss enabled the identification of a 3.5 Mb common deleted region located between the D10S587 and D10S186 markers. An additional result from an endometrial sample with evidence of a RER phenotype may suggest a more centromeric region of loss within the above-mentioned interval. This 401.84 Kb interval flanked by the D10S587 and D10S216 markers may be a plausible location for a putative suppressor gene involved in early stage endometrial carcinogenesis.