11 resultados para Growth Models (economics)
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We present new populational growth models, generalized logistic models which are proportional to beta densities with shape parameters p and 2, where p > 1, with Malthusian parameter r. The complex dynamical behaviour of these models is investigated in the parameter space (r, p), in terms of topological entropy, using explicit methods, when the Malthusian parameter r increases. This parameter space is split into different regions, according to the chaotic behaviour of the models.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.
Resumo:
In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.
Resumo:
Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.
Resumo:
In this work we develop and investigate generalized populational growth models, adjusted from Beta(p, 2) densities, with Allee effect. The use of a positive parameter leads the presented generalization, which yields some more flexible models with variable extinction rates. An Allee limit is incorporated so that the models under study have strong Allee effect.
Resumo:
In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.