26 resultados para Gravel and aggregates
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Construction and demolition waste (CDW) represents around 31% of all waste produced in the European Union. It is today acknowledged that the consumption of raw materials in the construction industry is a non-sustainable activity. It is thus necessary to reduce this consumption, and the volume of CDW dumped, by using this waste as a source of raw materials for the production of recycled aggregates. One potential use of these aggregates is their incorporation in reinforced concrete as a replacement of natural aggregates. A concrete that incorporates these aggregates and still performs well requires them to be fully characterized so that their behaviour within the concrete can be predicted. Coarse recycled aggregates have been studied quite thoroughly, because they are simpler to reintroduce in the market as a by-product, and so has the performance of concrete made with them. This paper describes the main results of research designed to characterize the physical and chemical properties of fine recycled aggregates for concrete production and their relationship with mineralogical composition and preprocessing. The constraints of the incorporation of fine aggregates in reinforced concrete are discussed. It is shown that, unless a developed processing diagram is used, this application is not feasible. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.
Resumo:
The reuse of structural concrete elements to produce new concrete aggregates is accepted as an alternative to dumping them and is favourable to the sustainability of natural reserves. Even though the construction sector is familiar with the use of coarse recycled concrete aggregates, the recycled concrete fines are classified as less noble resources. This research sets out to limit the disadvantages associated with the performance of concrete containing fine recycled concrete aggregates through the use of superplasticisers. Two types of latest generation superplasticisers were used that differ in terms of water reduction capacity and robustness, and the workability, density and compressive strength of each of the compositions analysed were then compared: a reference concrete, with no plasticisers, and concrete mixes with the superplasticisers. For each concrete family mixes with 0%, 10%, 30%, 50% and 100% replacement ratios of fine natural aggregates (FNA) by fine recycled concrete aggregates (FRA) were analysed. Concrete with incorporation of recycled aggregates was found to have poorer relative performance. The mechanical performance of concrete with recycled aggregates and superplasticisers was generally superior to that of the reference concrete with no admixtures and of conventional concrete with lower performance superplasticisers.
Resumo:
This research aims at analysing the mechanical performance of concrete with recycled aggregates (RA) from construction and demolition waste (CDW) from various locations in Portugal. First the characteristics of the various aggregates (natural and recycled) used in the production of concrete were thoroughly analysed. The composition of the RA was determined and several physical and chemical tests of the aggregates were performed. In order to evaluate the mechanical performance of concrete, compressive strength (in cubes and cylinders), splitting tensile strength, modulus of elasticity and abrasion resistance tests were performed. Concrete mixes with RA from CDW from several recycling plants were evaluated, in order to understand the influence that the RA's collection point, and consequently their composition, has on the characteristics of the mixes produced. The analysis of the mechanical performance allowed concluding that the use of RA worsens most of the properties tested, especially when fine RA are used. On the other hand, there was an increase in abrasion resistance when coarse RA were used. In global terms, the use of this type of aggregates, in limited contents, is viable from a mechanical viewpoint. (C) 2015 Elsevier Ltd. All rights reserved.
Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste
Resumo:
This paper assesses the physical, chemical and mineralogical characteristics of fine recycled aggregates obtained from crushed concrete waste, comparing them with two types of natural fine aggregates from different origins. A commercial concrete was jaw crushed, and the effect of different aperture sizes on the particle size distribution of the resulting aggregates was evaluated. The density and water absorption of the recycled aggregates was determined and a model for predicting water absorption over time is proposed. Both natural and recycled aggregates were characterized regarding bulk density and fines content. Recycled aggregates were additionally characterized by XRD, SEM/EDS and DTA/TG of individual size fractions. The results show that natural and recycled fine aggregates have very different characteristics. This should be considered in potential applications, both in terms of the limits for replacing amounts and of the rules and design criteria of the manufactured products. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a study concerning the fatigue behaviour of asphalt mixtures with bitumen modified with high content of crumb rubber used in Portugal. For assessing the fatigue behaviour of this type of mixtures, four asphalt mixtures with high content of crumb rubber were used: two field bituminous mixtures – an open-graded and a gap-graded – both with granite aggregates; and two laboratory manufactured bituminous mixtures – an open-graded mixture with granite aggregates and a gap-graded mixture with crushed gravel aggregates. Since this type of mixtures are mainly applied in wearing courses, the effect of ageing in the fatigue behaviour of one of the studied asphalt rubber mixtures was also assessed through laboratory testing. The paper presents the main results achieved so far concerning the fatigue resistance and it could be concluded that all the materials have exhibited a good behaviour, in agreement with others previous studies. In the case of the aged gap-graded material, it was observed a slight reduction on the fatigue life comparatively to the un-aged one.
Resumo:
Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage: carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates sand - with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.
Resumo:
The majority of worldwide structures use concrete as its main material. This happens because concrete is economically feasible, due to its undemanding production technology and case Of use. However, it is widely recognized that concrete production has a strong environmental impact in the planet. Natural aggregates use is one of the most important problems of concrete production nowadays, since they are obtained from limited, and in some countries scarce, resources. In Portugal, although there are enough stone quarries to cover coarse aggregates needs for several more years, Supplies of fine aggregates are becoming scarcer, especially in the northern part of the country. On the other hand, as concrete structures' life cycle comes to an end, an urgent need emerges to establish technically and economically viable solutions for demolition debris, other than for use as road base and quarry fill. This paper presents a partial life cycle assessment (LCA) of concrete made with fine recycled concrete aggregates performed with EcoConcrete tool. EcoConcrete is a tailor-made, interactive, learning and communications tool promoted by the Joint Project Group (JPG) on the LCA of concrete, to qualify and quantify the overall environment impact of concrete products. It consists of an interactive Excel-spreadsheet in which several environmental inputs (material quantities, distances from origin to production Site, production processes) and outputs (material, energy, emissions to air, water, soil or waste) are collected in a life cycle inventory, and are then processed to determine the environmental impact (assessment) of the analysed concrete, in terms of ozone layer depletion, smog or "greenhouse" effect.
Resumo:
Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Mononuclear manganese(II) [Mn(kappa O-HL)(2)(CH3OH)(4)] (4), nickel(II) [Ni(kappa O-2, kappa N-L)(H2O)(3)] (5), cadmium(II) [Cd(kappa O-2-HL)(2)(CH3OH)(3)] (7), tetranuclear zinc(II) [Zn-4(mu-OH)(2)(1 kappa O:2 kappa O-HL)(4)(kappa O-HL)(2)(H2O)(4)] (6) and polynuclear aqua sodium(I) [Na(H2O)(2)(mu-H2O)(2)](n)(HL)(n) (2) and magnesium(II) [Mg(OH)(H2O)(mu-H2O)(2)](n)(-HL)(n) (3) complexes were synthesized using 3-(2-carboxyphenyl-hydrazone)pentane-2,4-dione (H2L, 1) as a ligand precursor. The complexes were characterized by single crystal X-ray diffraction, elemental analysis, IR, H-1 and C-13 NMR (for 2, 3, 6 and 7) spectroscopies. Mono- or dianionic deprotonated derivatives of H2L display different coordination modes and lead to topologies and nuclearities of the complexes depending on metal ions and conditions used for the syntheses. Extensive intermolecular H-bonds form supramolecular arrangements in 1D chains (4 and 6), 1D chains of the organic anion and 2D networks of the metal-aqua aggregates (2 and 3), 2D networks (7) or even 3D frameworks (5). Electrochemical studies, by cyclic voltammetry and controlled potential electrolysis, show ligand centred redox processes as corroborated by theoretical DFT calculations in terms of LUMO and HOMO compositions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The magnetic and electrical properties of Ni implanted single crystalline TiO2 rutile were studied for nominal implanted fluences between 0.5 x 10(17) cm(-2) and 2.0 x 10(17) cm(-2) with 150 keV energy, corresponding to maximum atomic concentrations between 9 at% and 27 at% at 65 nm depth, in order to study the formation of metallic oriented aggregates. The results indicate that the as implanted crystals exhibit superparamagnetic behavior for the two higher fluences, which is attributed to the formation of nanosized nickel clusters with an average size related with the implanted concentration, while only paramagnetic behavior is observed for the lowest fluence. Annealing at 1073 K induces the aggregation of the implanted nickel and enhances the magnetization in all samples. The associated anisotropic behavior indicates preferred orientations of the nickel aggregates in the rutile lattice consistent with Rutherford backscattering spectrometry-channelling results. Electrical conductivity displays anisotropic behavior but no magnetoresistive effects were detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a review of the literature published so far on the use of fine aggregates from construction demolition waste used as a partial or total replacement of fine natural aggregates in concrete production. The review presents the initial works on this subject and an overview of the existing regulations. It goes on to describe the production, treatment and properties of the fine recycled aggregates (FRA). The most suitable mixing techniques for concrete with this type of aggregates are then discussed. The properties of these concrete mixes are analysed in detail, after which a few examples of structures with this type of concrete are described and compared. The acquisition of fine natural aggregates and the dumping of the fine fraction of construction and demolition waste are two serious environmental problems that can be solved simultaneously by using FRA in concrete production, a subject that is lagging behind the use of the corresponding coarse fraction.
Resumo:
This paper intends to evaluate the capacity of producing concrete with a pre-established performance (in terms of mechanical strength) incorporating recycled concrete aggregates (RCA) from different sources. To this purpose, rejected products from the precasting industry and concrete produced in laboratory were used. The appraisal of the self-replication capacity was made for three strength ranges: 15-25 MPa, 35-45 MPa and 65-75 MPa. The mixes produced tried to replicate the strength of the source concrete (SC) of the RA. Only total, (100%) replacement of coarse natural aggregates (CNA) by coarse recycled concrete aggregates (CRCA) was tested. The results show that, both in mechanical and durability terms, there were no significant differences between aggregates from controlled sources and those from precast rejects for the highest levels of the target strength. Furthermore, the performance losses resulting from the RA's incorporation are substantially reduced when used medium or high strength SC's. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this paper is to evaluate the influence of the crushing process used to obtain recycled concrete aggregates on the performance of concrete made with those aggregates. Two crushing methods were considered: primary crushing, using a jaw crusher, and primary plus secondary crushing (PSC), using a jaw crusher followed by a hammer mill. Besides natural aggregates (NA), these two processes were also used to crush three types of concrete made in laboratory (L20, L45 e L65) and three more others from the precast industry (P20, P45 e P65). The coarse natural aggregates were totally replaced by coarse recycled concrete aggregates. The recycled aggregates concrete mixes were compared with reference concrete mixes made using only NA, and the following properties related to the mechanical and durability performance were tested: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; water absorption by capillarity; water absorption by immersion; and shrinkage. The results show that the PSC process leads to better performances, especially in the durability properties. © 2014 RILEM