11 resultados para Graph-based method

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism. Semi-adherent HEK and adherent AGS cell lines, transfected with the plasmid pVAX-GFP using Lipofectamine, were used as model systems. Good partial least squares (PLS) models were built to estimate the transfection efficiency, either considering each cell line independently (R 2 ≥ 0.92; RMSECV ≤ 2 %) or simultaneously considering both cell lines (R 2 = 0.90; RMSECV = 2 %). Additionally, the effect of the transfection process on the HEK cell biochemical and metabolic features could be evaluated directly from the FT-IR spectra. Due to the high sensitivity of the technique, it was also possible to discriminate the effect of the transfection process from the transfection reagent on KEK cells, e.g., by the analysis of spectral biomarkers and biochemical and metabolic features. The present results are far beyond what any reporter gene assay or other specific probe can offer for these purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many Hyperspectral imagery applications require a response in real time or near-real time. To meet this requirement this paper proposes a parallel unmixing method developed for graphics processing units (GPU). This method is based on the vertex component analysis (VCA), which is a geometrical based method highly parallelizable. VCA is a very fast and accurate method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Experimental results obtained for simulated and real hyperspectral datasets reveal considerable acceleration factors, up to 24 times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A organização automática de mensagens de correio electrónico é um desafio actual na área da aprendizagem automática. O número excessivo de mensagens afecta cada vez mais utilizadores, especialmente os que usam o correio electrónico como ferramenta de comunicação e trabalho. Esta tese aborda o problema da organização automática de mensagens de correio electrónico propondo uma solução que tem como objectivo a etiquetagem automática de mensagens. A etiquetagem automática é feita com recurso às pastas de correio electrónico anteriormente criadas pelos utilizadores, tratando-as como etiquetas, e à sugestão de múltiplas etiquetas para cada mensagem (top-N). São estudadas várias técnicas de aprendizagem e os vários campos que compõe uma mensagem de correio electrónico são analisados de forma a determinar a sua adequação como elementos de classificação. O foco deste trabalho recai sobre os campos textuais (o assunto e o corpo das mensagens), estudando-se diferentes formas de representação, selecção de características e algoritmos de classificação. É ainda efectuada a avaliação dos campos de participantes através de algoritmos de classificação que os representam usando o modelo vectorial ou como um grafo. Os vários campos são combinados para classificação utilizando a técnica de combinação de classificadores Votação por Maioria. Os testes são efectuados com um subconjunto de mensagens de correio electrónico da Enron e um conjunto de dados privados disponibilizados pelo Institute for Systems and Technologies of Information, Control and Communication (INSTICC). Estes conjuntos são analisados de forma a perceber as características dos dados. A avaliação do sistema é realizada através da percentagem de acerto dos classificadores. Os resultados obtidos apresentam melhorias significativas em comparação com os trabalhos relacionados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cork oak is the second most dominant forest species in Portugal and makes this country the world leader in cork export. Occupational exposure to Chrysonilia sitophila and the Penicillium glabrum complex in cork industry is common, and the latter fungus is associated with suberosis. However, as conventional methods seem to underestimate its presence in occupational environments, the aim of our study was to see whether information obtained by polymerase chain reaction (PCR), a molecular-based method, can complement conventional findings and give a better insight into occupational exposure of cork industry workers. We assessed fungal contamination with the P. glabrum complex in three cork manufacturing plants in the outskirts of Lisbon using both conventional and molecular methods. Conventional culturing failed to detect the fungus at six sampling sites in which PCR did detect it. This confirms our assumption that the use of complementing methods can provide information for a more accurate assessment of occupational exposure to the P. glabrum complex in cork industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since collaborative networked organisations are usually formed by independent and heterogeneous entities, it is natural that each member holds his own set of values, and that conflicts among partners might emerge because of some misalignment of values. In contrast, it is often stated in literature that the alignment between the value systems of members involved in collaborative processes is a prerequisite for successful co-working. As a result, the issue of core value alignment in collaborative networks started to attract attention. However, methods to analyse such alignment are lacking mainly because the concept of 'alignment' in this context is still ill defined and shows a multifaceted nature. As a contribution to the area, this article introduces an approach based on causal models and graph theory for the analysis of core value alignment in collaborative networks. The potential application of the approach is then discussed in the virtual organisations' breeding environment context.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a direct power control (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFCs). Matrix converters (MCs) allow the direct ac/ac power conversion without dc energy storage links; therefore, the MC-based UPFC (MC-UPFC) has reduced volume and cost, reduced capacitor power losses, together with higher reliability. Theoretical principles of direct power control (DPC) based on sliding mode control techniques are established for an MC-UPFC dynamic model including the input filter. As a result, line active and reactive power, together with ac supply reactive power, can be directly controlled by selecting an appropriate matrix converter switching state guaranteeing good steady-state and dynamic responses. Experimental results of DPC controllers for MC-UPFC show decoupled active and reactive power control, zero steady-state tracking error, and fast response times. Compared to an MC-UPFC using active and reactive power linear controllers based on a modified Venturini high-frequency PWM modulator, the experimental results of the advanced DPC-MC guarantee faster responses without overshoot and no steady-state error, presenting no cross-coupling in dynamic and steady-state responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is the group of techniques that use antibodies as specific reagents to identify and demonstrate several cell and tissue components that are antigens. This linking allows locating and identifying the in situ presence of various substances by means of color that is associated with the formed antigen-antibody complexes. The practical value of this biotechnology area, widely used in Pathology and Oncology, in diagnostic, prognostic, theranostic and research context, results from the possibility of combining a colour marker with an antibody without causing any damage to specific binding established between antibody and antigen. This provides the microscopic observation of the target locations where the antibody and hence the antigen are present. IHC is presented as a powerful means for identification of several cellular and tissue structures that can be associated with pathologies, and of the consequences, at functional and morphological level, of these same elements action.