5 resultados para Graph-Based Metrics
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A organização automática de mensagens de correio electrónico é um desafio actual na área da aprendizagem automática. O número excessivo de mensagens afecta cada vez mais utilizadores, especialmente os que usam o correio electrónico como ferramenta de comunicação e trabalho. Esta tese aborda o problema da organização automática de mensagens de correio electrónico propondo uma solução que tem como objectivo a etiquetagem automática de mensagens. A etiquetagem automática é feita com recurso às pastas de correio electrónico anteriormente criadas pelos utilizadores, tratando-as como etiquetas, e à sugestão de múltiplas etiquetas para cada mensagem (top-N). São estudadas várias técnicas de aprendizagem e os vários campos que compõe uma mensagem de correio electrónico são analisados de forma a determinar a sua adequação como elementos de classificação. O foco deste trabalho recai sobre os campos textuais (o assunto e o corpo das mensagens), estudando-se diferentes formas de representação, selecção de características e algoritmos de classificação. É ainda efectuada a avaliação dos campos de participantes através de algoritmos de classificação que os representam usando o modelo vectorial ou como um grafo. Os vários campos são combinados para classificação utilizando a técnica de combinação de classificadores Votação por Maioria. Os testes são efectuados com um subconjunto de mensagens de correio electrónico da Enron e um conjunto de dados privados disponibilizados pelo Institute for Systems and Technologies of Information, Control and Communication (INSTICC). Estes conjuntos são analisados de forma a perceber as características dos dados. A avaliação do sistema é realizada através da percentagem de acerto dos classificadores. Os resultados obtidos apresentam melhorias significativas em comparação com os trabalhos relacionados.
Resumo:
Perceber a rede estrutural formada pelos neurónios no cérebro a nível da macro escala é um desafio atual na área das neurociências. Neste estudo analisou-se a conectividade estrutural do cérebro em 22 indivíduos saudáveis e em dois doentes com epilepsia pós-traumática. Avaliaram-se as diferenças entre estes dois grupos. Também se pesquisaram diferenças a nível do género e idade no grupo de indivíduos saudáveis e os que têm valores médios mais elevados nas métricas de caracterização da rede. Para tal, desenvolveu-se um protocolo de análise recorrendo a diversos softwares especializados e usaram-se métricas da Teoria dos Grafos para a caracterização da conectividade estrutural entre 118 regiões encefálicas distintas. Dentro do grupo dos indivíduos saudáveis concluiu-se que os homens, no geral, são os que têm média mais alta para as métricas de caracterização da rede estrutural. Contudo, não se observaram diferenças significativas em relação ao género nas métricas de caracterização global do cérebro. Relativamente à idade, esta correlaciona-se negativamente, no geral, com as métricas de caracterização da rede estrutural. As regiões onde se observaram as diferenças mais importantes entre indivíduos saudáveis e doentes são: o sulco rolândico, o hipocampo, o pré-cuneus, o tálamo e o cerebelo bilateralmente. Estas diferenças são consistentes com as imagens radiológicas dos doentes e com a literatura estudada sobre a epilepsia pós-traumática. Preveem-se desenvolvimentos para o estudo da conectividade estrutural do cérebro humano, uma vez que a sua potencialidade pode ser combinada com outros métodos de modo a caracterizar as alterações dos circuitos cerebrais.
Resumo:
Background: With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results: PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions: PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores