8 resultados para Grapes -- Biotechnology
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
Resumo:
The effect of cultivation parameters such as temperature incubation, IPTG induction and ethanol shock on the production of Pseudomonasaeruginosa amidase (E.C.3.5.1.4) in a recombinant Escherichia coli strain in LB ampicillin culture medium was investigated. The highest yield of solubleamidase, relatively to other proteins, was obtained in the condition at 37 degrees C using 0.40 mM IPTG to induce growth, with ethanol. Our results demonstrate the formation of insoluble aggregates containing amidase, which was biologically active, in all tested growth conditions. Addition of ethanol at 25 degrees C in the culture medium improved amidase yield, which quantitatively aggregated in a biologically active form and exhibited in all conditions an increased specific activity relatively to the soluble form of the enzyme. Non-denaturing solubilization of the aggregated amidase was successfully achieved using L-arginine. The aggregates obtained from conditions at 37 degrees C by Furier transform infrared spectroscopy (FTIR) analysis demonstrated a lower content of intermolecular interactions, which facilitated the solubilization step applying non-denaturing conditions. The higher interactions exhibited in aggregates obtained at suboptimal conditions compromised the solubilization yield. This work provides an approach for the characterization and solubilization of novel reported biologically active aggregates of this amidase.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Diante dos avanços biotecnológicos o cultivo de plantas geneticamente modificadas, como, por exemplo, o milho (Zea mays), aumentou consideravelmente nos últimos anos. Embora esta tecnologia apresente comprovados benefícios em relação ao aumento da produtividade e durabilidade do alimento, a população ainda receia em consumir produtos geneticamente modificados. O objetivo deste trabalho foi comparar dois protocolos baseados na utilização de CTAB e avaliar qual o melhor para extração de DNA em alimentos processados derivados de milho, bem como identificar dois dos resíduos transgênicos mais comuns em gêneros alimentícios derivados de milho: Cry1ab e Cry1F. Para isto, 14 amostras derivadas de milho foram avaliadas utilizando dois diferentes protocolos de extração de DNA e a deteção dos eventos transgênicos conduzida pela técnica de PCR qualitativa. Entre as amostras analisadas, 57% resultaram positivas para deteção de ambos os eventos de milho transgênico avaliados.
Resumo:
A strain of Pleurotus ostreatus was grown in tomato pomace as sole carbon source for production of laccase. The culture of P. ostreatus revealed a peak of laccase activity (147 U/L of fermentation broth) on the 4th day of culture with a specific activity of 2.8 U/mg protein. Differential chromatographic behaviour of laccase was investigated on affinity chromatographic matrices containing either urea, acetamide, ethanolamine or IDA as affinity ligands. Laccase exhibited retention on such affinity matrices and it was purified on a Sepharose 6B-BDGE-urea column with final enzyme recoveries of about 60%, specific activity of 6.0 and 18.0 U/mg protein and purification factors in the range of 14-46. It was also possible to demonstrate that metal-free laccase did not adsorb to Sepharose 6B-BDGE-urea column which suggests that adsorption of native laccase on this affinity matrix was apparently due to the specific interaction of carbonyl groups available on the matrix with the active site Cu (II) ions of laccase. The kinetic parameters (V (max), K (m) , K (cat), and K (cat)/K (m) ) of the purified enzyme for several substrates were determined as well as laccase stability and optimum pH and temperature of enzyme activity. This is the first report describing the production of laccase from P. ostreatus grown on tomato pomace and purification of this enzyme based on affinity matrix containing urea as affinity ligand.
Resumo:
Basidiomycete strains synthesize several types of beta-D-glucans, which play a major role in the medicinal properties of mushrooms. Therefore, the specific quantification of these beta-D-glucans in mushroom strains is of great biochemical importance. Because published assay methods for these beta-D-glucans present some disadvantages, a novel colorimetric assay method for beta-D-glucan with alcian blue dye was developed. The complex formation was detected by following the decrease in absorbance in the range of 620 nm and by hypsochromic shift from 620 to 606 nm (similar to 14 nm) in UV-Vis spectrophotometer. Analysis of variance was used for optimization of the slope of the calibration curve by using the assay mixture containing 0.017% (w/v) alcian blue in 2% (v/v) acetic acid at pH 3.0. The high-throughput colorimetric assay method on microtiter plates was used for quantification of beta-D-glucans in the range of 0-0.8 mu g, with a slope of 44.15 x 10(-2) and a limit of detection of 0.017 mu g/well. Recovery experiments were carried out by using a sample of Hericium erinaceus, which exhibited a recovery of 95.8% for beta-1,3-D-glucan. The present assay method exhibited a 10-fold higher sensitivity and a 59-fold lower limit of detection compared with the published method with congo red beta-D-glucans of several mushrooms strains were isolated from fruiting bodies and mycelia, and they were quantified by this assay method. This assay method is fast, specific, simple, and it can be used to quantify beta-D-glucans from other biological sources. (C) 2015 American Institute of Chemical Engineers
Resumo:
BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.
Resumo:
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.