7 resultados para Good faith (Law)
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper studies a portfolio choice problem such that the pricing rule may incorporate transaction costs and the risk measure is coherent and expectation bounded. We will prove the necessity of dealing with pricing rules such that there exists an essentially bounded stochastic discount factor, which must be also bounded from below by a strictly positive value. Otherwise good deals will be available to traders, i.e., depending on the selected risk measure, investors can build portfolios whose (risk, return) will be as close as desired to (−infinity, infinity) or (0, infinity). This pathologic property still holds for vector risk measures (i.e., if we minimize a vector valued function whose components are risk measures). It is worthwhile to point out that essentially bounded stochastic discount factors are not usual in financial literature. In particular, the most famous frictionless, complete and arbitrage free pricing models imply the existence of good deals for every coherent and expectation bounded (scalar or vector) measure of risk, and the incorporation of transaction costs will not guarantee the solution of this caveat.
Resumo:
Recent literature has proved that many classical pricing models (Black and Scholes, Heston, etc.) and risk measures (V aR, CV aR, etc.) may lead to “pathological meaningless situations”, since traders can build sequences of portfolios whose risk leveltends to −infinity and whose expected return tends to +infinity, i.e., (risk = −infinity, return = +infinity). Such a sequence of strategies may be called “good deal”. This paper focuses on the risk measures V aR and CV aR and analyzes this caveat in a discrete time complete pricing model. Under quite general conditions the explicit expression of a good deal is given, and its sensitivity with respect to some possible measurement errors is provided too. We point out that a critical property is the absence of short sales. In such a case we first construct a “shadow riskless asset” (SRA) without short sales and then the good deal is given by borrowing more and more money so as to invest in the SRA. It is also shown that the SRA is interested by itself, even if there are short selling restrictions.
Resumo:
Mestrado em Controlo de Gestão e dos Negócios
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil Ramo Edificações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil, na Área de Especialização de Hidráulica
Resumo:
The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 x 10(-3) m. The experimental data reveal that the target erosion depth profile is a function of the angle. made by B with a horizontal line defined by z = 2 x 10(-3) m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle theta. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.