30 resultados para Generalized Weyl Fractional q-Integral Operator
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
In recent papers, the authors obtained formulas for directional derivatives of all orders, of the immanant and of the m-th xi-symmetric tensor power of an operator and a matrix, when xi is a character of the full symmetric group. The operator norm of these derivatives was also calculated. In this paper, similar results are established for generalized matrix functions and for every symmetric tensor power.
Resumo:
Esta investigação debruça-se sobre dois universos: o do Teatro e Comunidade e o da Saúde a fim de refletir sobre uma interação entre essas duas áreas de conhecimento. O trabalho dedica-se à reflexão do conceito de comunidade a partir da análise de três “S” propostos pelo filósofo Agostinho da Silva: Sustento, Saber e Saúde. Para tanto, o estudo faz um contraponto entre o Saber e a Ciência sob a ótica do conhecimento cartesiano e o Saber adquirido a partir da experiência, das narrativas. Defende o Saber libertador enquanto possibilidade de autonomia dos sujeitos. O indivíduo, então protagonista de sua própria vida, passa a ter um melhor conhecimento sobre saúde, na visão integral da mesma, promovendo-a, consequentemente. Para fundamentar tal argumento, esse trabalho analisa os conceitos da promoção da saúde e da saúde integral, abordando aspectos históricos da medicina preventiva, sanitarista e analisando práticas da educação em saúde. Como possibilidade para se chegar a esse Saber e à Saúde Integral, o estudo propõe a linguagem teatral como uma alternativa. O binômio saúde e arte, portanto, encontra na conceituação de Teatro e Comunidade o campo de conhecimento que mais fundamenta essa interação. O estudo se propõe a contextualizar o surgimento e as práticas desse teatro e a analisar quatro grupos que têm esse binômio como premissa comum. Por fim, o trabalho levanta as características fundamentais de uma prática teatral nessa linha, a fim de promover o teatro como uma alternativa para se pensar a arte como saúde.
Resumo:
This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
It is a known fact in structural optimization that for structures subject to prescribed non-zero displacements the work done by the loads is not agood measure of compliance, neither is the stored elastic energy. We briefly discuss a possible alternative measure of compliance, valid for general boundary conditions. We also present the adjoint states (necessary for the computation of the structural derivative) for the three functionals under consideration. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.
Resumo:
This paper is on variable-speed wind turbines with permanent magnet synchronous generator (PMSG). Three different drive train mass models and three different topologies for the power-electronic converters are considered. The three different topologies considered are respectively a matrix, a two-level and a multilevel converter. A novel control strategy, based on fractional-order controllers, is proposed for the wind turbines. Simulation results are presented to illustrate the behaviour of the wind turbines during a converter control malfunction, considering the fractional-order controllers. Finally, conclusions are duly drawn. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
O presente documento tem como principal objectivo efectuar o projecto de dimensionamento de um sistema de águas quentes sanitárias para uma escola. Numa primeira fase foi elaborado uma pesquisa sobre o contexto energético, a nível mundial, europeu e nacional, bem como o seu contexto jurídico a nível europeu e nacional, e uma explicação superficial sobre os fundamentos da energia solar, onde se foca a importância da radiação solar e os vários tipos de sistemas solares térmicos, bem como os seus constituintes. Segue-se a abordagem ao caso de estudo onde foram efectuados inicialmente inquéritos como forma de determinar os consumos de água quente utilizada nessa escola. Continuou-se o estudo efectuando-se a variação de duas características do sistema solar: o tamanho dos depósitos e o tipo de colectores solares a aplicar. Após as simulações efectuadas para a determinação das soluções a aplicar ao sistemasolar e apresentadas ao longo do presente documento, foram efectuadas análises económicas como forma de se verificar a viabilidade do sistema a aplicar. Por último foram elaboradas conclusões sobre o sistema a aplicar e apresentados alguns cenários financeiros do mesmo.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.