13 resultados para GST-recombinant proteins
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
We report here the cloning and the characterization of the T. pyriformis CCT eta gene (TpCCT eta) and also a partial sequence of the corresponding T. thermophila gene (TtCCT eta). The TpCCt eta gene encodes a protein sharing a 60.3% identity with the mouse CCT eta. We have studied the expression of these genes in Tetrahymena exponentially growing cells, cells regenerating their cilia for different periods and during different stages of the cell sexual reproduction. These genes have similar patterns of expression to those of the previously identified TpCCt gamma gene. Indeed, the Tetrahymena CCT eta and CCT gamma genes are up-regulated at 60-120 min of cilia recovery, and in conjugation when vegetative growth was resumed and cell division took place. Our results seem to indicate that both CCT subunits play an important role in the biogenesis of the newly synthesized cilia of Tetrahymena and during its cell division.
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
The effect of cultivation parameters such as temperature incubation, IPTG induction and ethanol shock on the production of Pseudomonasaeruginosa amidase (E.C.3.5.1.4) in a recombinant Escherichia coli strain in LB ampicillin culture medium was investigated. The highest yield of solubleamidase, relatively to other proteins, was obtained in the condition at 37 degrees C using 0.40 mM IPTG to induce growth, with ethanol. Our results demonstrate the formation of insoluble aggregates containing amidase, which was biologically active, in all tested growth conditions. Addition of ethanol at 25 degrees C in the culture medium improved amidase yield, which quantitatively aggregated in a biologically active form and exhibited in all conditions an increased specific activity relatively to the soluble form of the enzyme. Non-denaturing solubilization of the aggregated amidase was successfully achieved using L-arginine. The aggregates obtained from conditions at 37 degrees C by Furier transform infrared spectroscopy (FTIR) analysis demonstrated a lower content of intermolecular interactions, which facilitated the solubilization step applying non-denaturing conditions. The higher interactions exhibited in aggregates obtained at suboptimal conditions compromised the solubilization yield. This work provides an approach for the characterization and solubilization of novel reported biologically active aggregates of this amidase.
Resumo:
Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures that can be used as optical transducers for fluorescent proteins detection using the Fluorescence Resonance Energy Transfer approach. Double structures composed by pin based aSiC:H cells are analyzed. The color discrimination is achieved by ac photocurrent measurement under different externally applied bias. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. An electrical model, supported by a numerical simulation gives insight into the device operation. Results show that the optimized a-SiC:H heterostructures act as voltage controlled optical filters in the visible spectrum. When the applied voltages are chosen appropriately those optical transducers can detect not only the selective excitation of specimen fluorophores, but also the subsequent weak acceptor fluorescent channel emission.
Resumo:
We carry out systematic Monte Carlo simulations of Go lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.
Resumo:
The interaction of a variety of substrates with Pseudomonas aeruginosa native amidase (E.C. 3.5.1.4), overproduced in an Escherichia coli strain, was investigated using difference FTIR spectroscopy. The amides used as substrates showed an increase in hydrogen bonding upon association in multimers, which was not seen with esters. Evidence for an overall reduction or weakening of hydrogen bonding while amide and ester substrates are interacting with the enzyme is presented. The results describe a spectroscopic approach for analysis of substrate-amidase interaction and in situ monitoring of the hydrolysis and transferase reaction when amides or esters are used as substrates.
Resumo:
Background - The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTalpha to CCTzeta). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (alpha, beta and gamma) and actin, as quantitatively major substrates. Methodology/Principal findings - We disrupted the genes encoding CCTalpha and CCTdelta subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTalpha or CCTdelta showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTalpha rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTalpha, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTalpha localization in cilia. Conclusions/Significance - Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.