8 resultados para Fuzzy bridges
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The increase of mortality from cancer brought urgency in identification and validation of predictive markers of risk and therefore early diagnosis. There is evidence that cytogenetic biomarkers are positively correlated with risk of cancer, and this is validated by studies of cohort and case-control. Cytokinesis-blocked micronucleus (CBMN) assay is used extensively in molecular epidemiology, and can be considered as a “cytome” assay covering cell proliferation, apoptosis, necrosis and chromosomal changes. The chromosomal alterations most reported and studied by the CBMN are: micronucleus (MN), nucleoplasmic bridges (NPB) and nuclear buds (NBUDS). The use of the MN assay in biomonitoring studies had a large increase in the last 15 years and international projects such as the HUMN have helped to increase the applicability and reliability of these tests.
Resumo:
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
This paper presents a comparison between proportional integral control approaches for variable speed wind turbines. Integer and fractional-order controllers are designed using linearized wind turbine model whilst fuzzy controller also takes into account system nonlinearities. These controllers operate in the full load region and the main objective is to extract maximum power from the wind turbine while ensuring the performance and reliability required to be integrated into an electric grid. The main contribution focuses on the use of fractional-order proportional integral (FOPI) controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. A comparison between proposed control approaches for the variable speed wind turbines is presented using a wind turbine benchmark model in the Matlab/Simulink environment. Results show that FOPI has improved system performance when compared with classical PI and fuzzy PI controller outperforms the integer and fractional-order control due to its capability to deal with system nonlinearities and uncertainties. © 2014 IEEE.
Resumo:
A fuzzy linguistic controller has been developed and implemented with the aim to cope with interactions between control loops due to coupling effects. To access the performance of the proposed approach several experiments have also been conducted using the classical PID controllers in the control loops. A mixing process has been used as test bed of all controllers experimented and the corresponding dynamic model has been derived. The successful results achieved with the fuzzy linguistic controllers suggests that they can be an alternative to classical controllers when in the presence of process plants where automatic control as to cope with coupling effects between control loops. © 2014 IEEE.