5 resultados para Functions of letters
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).
Resumo:
We present the supersymmetric standard model three-loop beta-functions for gauge and Yukawa couplings and consider the effect of three-loop corrections on the standard running coupling analyses.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the two-Higgs-doublet model (THDM), generalized-CP transformations (phi(i) -> X-ij phi(*)(j) where X is unitary) and unitary Higgs-family transformations (phi(i) -> U-ij phi(j)) have recently been examined in a series of papers. In terms of gauge-invariant bilinear functions of the Higgs fields phi(i), the Higgs-family transformations and the generalized-CP transformations possess a simple geometric description. Namely, these transformations correspond in the space of scalar-field bilinears to proper and improper rotations, respectively. In this formalism, recent results relating generalized CP transformations with Higgs-family transformations have a clear geometric interpretation. We will review what is known regarding THDM symmetries, as well as derive new results concerning those symmetries, namely how they can be interpreted geometrically as applications of several CP transformations.
Resumo:
The conquest of the West by the stagecoaches and then by railway, Ford and the automobile civilization, the Moon landing by Apollo 11, Microsoft, Apple, CNN, Google and Facebook have appeared to us as celebratory examples of the willingness and ability of the US to overcome the distance and the absence through so-called modern progress of transportation and communication. Undoubtedly, the imaginary and the instrumental power associated to transports and communication of the last century and a half are identified with the mental images that the world has of the US. A world that has eagerly imported and copy their technology and technological culture. Beyond the illusions, this attempting, which has always been praised to transcende space and eclipse the time to get to places and peole increasingly distant and fast, has always a dark side: the political control of population, commercial advertising, the spread of the rumors, noise and gossip. However, since at least the nineteenth century, the political project incorporated in modern transportation and communication technologies was not shared by some of the most remarkable thinkers in the US not only in that century, but also in the 20th century. This paper begins by rescue Ralph W. Emerson and Henry D. Thoreau legacy regarding to communication. Emerson conceived communication as a give-and-take with no coordination between the two, and does not involve contact with the other. Thoreau, in turn, argued that modern trasnportation and communications inventions are but pretty toys which distract attention from serious things, nothing more than 'improved means to an end that is not perfected.' Secondly, we show that this skeptical view of the techological improvement of transport and communication was proceed in an original way with James W. Carey, a media studies thinker who became known for his criticism of the transmission view of communication.