8 resultados para Fractional Partial Differential Equation

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agências Financiadoras: FCT e MIUR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We start by studying the existence of positive solutions for the differential equation u '' = a(x)u - g(u), with u ''(0) = u(+infinity) = 0, where a is a positive function, and g is a power or a bounded function. In other words, we are concerned with even positive homoclinics of the differential equation. The main motivation is to check that some well-known results concerning the existence of homoclinics for the autonomous case (where a is constant) are also true for the non-autonomous equation. This also motivates us to study the analogous fourth-order boundary value problem {u((4)) - cu '' + a(x)u = vertical bar u vertical bar(p-1)u u'(0) = u'''(0) = 0, u(+infinity) = u'(+infinity) = 0 for which we also find nontrivial (and, in some instances, positive) solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant integrals are derived for nematic liquid crystals and applied to materials with small Ericksen number and topological defects. The nematic material is confined between two infinite plates located at y = -h and y = h (h is an element of R+) with a semi-infinite plate at y = 0 and x < 0. Planar and homeotropic strong anchoring boundary conditions to the director field are assumed at these two infinite and semi-infinite plates, respectively. Thus, a line disclination appears in the system which coincides with the z-axis. Analytical solutions to the director field in the neighbourhood of the singularity are obtained. However, these solutions depend on an arbitrary parameter. The nematic elastic force is thus evaluated from an invariant integral of the energy-momentum tensor around a closed surface which does not contain the singularity. This allows one to determine this parameter which is a function of the nematic cell thickness and the strength of the disclination. Analytical solutions are also deduced for the director field in the whole region using the conformal mapping method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.