1 resultado para Fokker-Planck problem
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (6)
- Adam Mickiewicz University Repository (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (26)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (6)
- Brock University, Canada (25)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (13)
- Cambridge University Engineering Department Publications Database (62)
- CentAUR: Central Archive University of Reading - UK (30)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (10)
- Cornell: DigitalCommons@ILR (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (22)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (137)
- Instituto Politécnico do Porto, Portugal (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (6)
- Ministerio de Cultura, Spain (42)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (136)
- Queensland University of Technology - ePrints Archive (217)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (8)
- School of Medicine, Washington University, United States (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (15)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (14)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (1)
Resumo:
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.