43 resultados para Fine Particles

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 μm2/cm3 (increased to 72.9 μm2/cm3 due to gas burning) to a maximum of 890.3 μm2/cm3 measured during fish boiling in water, and a maximum of 4500 μm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm 3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 mu m(2)/cm(3) (increased to 72.9 mu m(2)/cm(3) due to gas burning) to a maximum of 890.3 mu m(2)/cm(3) measured during fish boiling in water, and a maximum of 4500 mu m(2)/cm(3) during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of great importance to recognize the particles size distribution and, particularly, the exposure to fine particles (≤ 2.5 μm). This particles dimension corresponds to the respirable fraction, the one that can implicate local and systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three units related with swine production and consumption, namely: feed production, swine production and swine slaughterhouse. A size-selective particle measuring in five to six workplaces of each unit was performed. Measurements of PM were done using a portable direct-reading hand-held equipment (Lighthouse, model 3016 IAQ). Data showed slaughterhouse unit with higher values, with values ranging from 0.030 to 0.142 mg/m3 (0.073 + 0.043), being the cutting room the workplace with higher values. In feed production unit, values were between 0.026 and 0.033 mg/m3 (0.028 + 0.003) with the warehouse of pharmacy products as the workplace with higher values. Finally, in swine unit values ranged from 0.006 to 0.048 mg/m3 (0.023 + 0.017) with the batteries area presenting the higher values. PM can be rich in fungi and bacteria and their metabolites, such as endotoxins and mycotoxins. Previous publications already showed high contamination in these occupational settings and particles can have an important role in exposure since can easily act as carrier of these agents. Data acquired allow not only a better prediction of particle penetration into respiratory regions of the respiratory tract, but also a better estimation of PM health effects. Moreover, data permit to identify the workplaces where investment should be made to prevent and reduce exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sampling the total air concentration of particulate matter (PM) only provides a basic estimate of exposure that normally not allows correlating with the observed health effects. Therefore is of extreme importance to know the particles size distribution and, in more detail, the exposure to fine particles (≤ 2.5 µm). This particles dimension corresponds to the respirable fraction. This particle fraction can result, besides local effects, in systemic effects due to particle deposition and clearance from the lungs and transport within the organism. This study intended to describe occupational exposure to PM2.5 in three different units located near Lisbon and related with occupational exposure to organic dust, namely: swine and poultry feed production and waste management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to study the morphology and structure of the nanoparticles produced by femtosecond laser ablation of fused silica. Ultrashort laser pulses of 1030 nm wavelength and 550 fs duration were tightly focused by a high numerical aperture microscope objective at the surface of fused silica samples while scanning the sample in relation to the stationary laser beam. Laser tracks were created with pulse energies in the range 5-100 mu J, resulting in ablation debris of different morphologies. The debris were examined by scanning and transmission electron microscopy for their morphology and crystal structure in relation to the incident laser pulse energy. Ejected particles with sizes ranging from a few nanometers to a few microns were found. Their morphologies can be broadly classified into three categories: very fine round nanoparticles with diameters lower than 20 nm, nanoparticles with intermediate sizes between 50 and 200 nm, and big irregular particles with typical size between 0.5 and 1.5 mu m. The fine nanoparticles of the first category are predominantly observed at higher pulse energies and tend to aggregate to form web-like and arborescent-like structures. The nanoparticles with intermediate sizes are observed for all pulse energies used and may appear isolated or aggregated in clusters. Finally, the larger irregular particles of the third category are observed for all energies and appear normally isolated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The majority of studies investigated ambient particles, although in most industrialized countries people spend most of their time indoors and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor tasks, including cleaning tasks. Objective: To characterize the occupational exposure to particles during cleaning of hotel's rooms. Methodology: Measurements of mass concentration and particle number concentration were performed before and during cleaning tasks in two rooms with different floor types (wood and carpet) with the equipment Lighthouse, model 3016 IAQ. Results: Considering mass concentration, particles with higher were responsable for higher leves of contamination, particularly PM5.0 and PM10.0. However, considering the particle number concentration, the smaller particle size obtained the higher values. Conclusion: It was observed higher number of particles of the smaller size in all tasks, which is associated with worse health effects. It was observed that the room with wood in the floor has lower values when compared to the room with carpet. The tasks with greater exposure were the 'vacuuming' and 'clean up powder'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage: carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates sand - with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of worldwide structures use concrete as its main material. This happens because concrete is economically feasible, due to its undemanding production technology and case Of use. However, it is widely recognized that concrete production has a strong environmental impact in the planet. Natural aggregates use is one of the most important problems of concrete production nowadays, since they are obtained from limited, and in some countries scarce, resources. In Portugal, although there are enough stone quarries to cover coarse aggregates needs for several more years, Supplies of fine aggregates are becoming scarcer, especially in the northern part of the country. On the other hand, as concrete structures' life cycle comes to an end, an urgent need emerges to establish technically and economically viable solutions for demolition debris, other than for use as road base and quarry fill. This paper presents a partial life cycle assessment (LCA) of concrete made with fine recycled concrete aggregates performed with EcoConcrete tool. EcoConcrete is a tailor-made, interactive, learning and communications tool promoted by the Joint Project Group (JPG) on the LCA of concrete, to qualify and quantify the overall environment impact of concrete products. It consists of an interactive Excel-spreadsheet in which several environmental inputs (material quantities, distances from origin to production Site, production processes) and outputs (material, energy, emissions to air, water, soil or waste) are collected in a life cycle inventory, and are then processed to determine the environmental impact (assessment) of the analysed concrete, in terms of ozone layer depletion, smog or "greenhouse" effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 μm2/cm3, which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) μm have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.