2 resultados para Feedback Mechanism in MIMO
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Mammography equipment must be evaluated to ensure that images will be of acceptable diagnostic quality with lowest radiation dose. Quality Assurance (QA) aims to provide systematic and constant improvement through a feedback mechanism to address the technical, clinical and training aspects. Quality Control (QC), in relation to mammography equipment, comprises a series of tests to determine equipment performance characteristics. The introduction of digital technologies promoted changes in QC tests and protocols and there are some tests that are specific for each manufacturer. Within each country specifi c QC tests should be compliant with regulatory requirements and guidance. Ideally, one mammography practitioner should take overarching responsibility for QC within a service, with all practitioners having responsibility for actual QC testing. All QC results must be documented to facilitate troubleshooting, internal audit and external assessment. Generally speaking, the practitioner’s role includes performing, interpreting and recording the QC tests as well as reporting any out of action limits to their service lead. They must undertake additional continuous professional development to maintain their QC competencies. They are usually supported by technicians and medical physicists; in some countries the latter are mandatory. Technicians and/or medical physicists often perform many of the tests indicated within this chapter. It is important to recognise that this chapter is an attempt to encompass the main tests performed within European countries. Specific tests related to the service that you work within must be familiarised with and adhered too.
Resumo:
microRNA (miRNA) mediated regulation of protein expression has emerged as an important mechanism in T-cell physiology, from development and survival to activation, proliferation, and differentiation. One of the major classes of proteins involved in these processes are cytokines, which are both key input signals and major products of T-cell function. Here, we summarize the current data on the molecular cross-talk between cytokines and miRNAs: how cytokines regulate miRNA expression, and how specific miRNAs control cytokine production in T cells. We also describe the inflammatory consequences of deregulating the miRNA/cytokine axis in mice and humans. We believe this topical area will have key implications for immune modulation and treatment of autoimmune pathology.