15 resultados para FERROMAGNETIC SUPERCONDUCTOR RUSR2GDCU2O8
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Oxide based diluted magnetic semiconductor (DMS) materials have been a subject of increasing interest due to reports of room temperature ferromagnetism in several systems and their potential use in the development of spintronic devices. However, concerns on the stability of the magnetic properties of different DMS systems have been raised. Their magnetic moment is often unstable, vanishing with a characteristic decay time of weeks or months, which precludes the development of real applications. This paper reports on the ferromagnetic properties of two-year-aged Ti1-xCoxO2-δ reduced anatase nanopowders with different Co contents (0.03≤x≤0.10). Aged samples retain rather high values of magnetization, remanence and coercivity which provide strong evidence for a quite preserved long-range ferromagnetic order. In what concern Co segregation, some degree of metastability of the diluted Co doped anatase structure could be inferred in the case of the sample with the higher Co content.
Resumo:
Patients scheduled for a magnetic resonance imaging (MRI) scan sometimes require screening for ferromagnetic Intra Orbital Foreign Bodies (IOFBs). To assess this, they are required to fill out a screening protocol questionnaire before their scan. If it is established that a patient is at high risk, radiographic imaging is necessary. This review examines literature to evaluate which imaging modality should be used to screen for IOFBs, considering that the eye is highly sensitive to ionising radiation and any dose should be minimised. Method: Several websites and books were searched for information, these were as follows: PubMed, Science Direct, Web of Knowledge and Google Scholar. The terms searched related to IOFB, Ionising radiation, Magnetic Resonance Imaging Safety, Image Quality, Effective Dose, Orbits and X-ray. Thirty five articles were found, several were rejected due to age or irrelevance; twenty eight were eventually accepted. Results: There are several imaging techniques that can be used. Some articles investigated the use of ultrasound for investigation of ferromagnetic IOFBs of the eye and others discussed using Computed Tomography (CT) and X-ray. Some gaps in the literature were identified, mainly that there are no articles which discuss the lowest effective dose while having adequate image quality for orbital imaging. Conclusion: X-ray is the best method to identify IOFBs. The only problem is that there is no research which highlights exposure factors that maintain sufficient image quality for viewing IOFBs and keep the effective dose to the eye As Low As Reasonably Achievable (ALARA).
Resumo:
Purpose: To investigate whether standard X-ray acquisition factors for orbital radiographs are suitable for the detection of ferromagnetic intra-ocular foreign bodies in patients undergoing MRI. Method: 35 observers, at varied levels of education in radiography, attending a European Dose Optimisation EURASMUS Summer School were asked to score 24 images of varying acquisition factors against a clinical standard (reference image) using two alternative forced choice. The observers were provided with 12 questions and a 5 point Likert scale. Statistical tests were used to validate the scale, and scale reliability was also measured. The images which scored equal to, or better than, the reference image (36) were ranked alongside their corresponding effective dose (E), the image with the lowest dose equal to or better than the reference is considered the new optimum acquisition factors. Results: Four images emerged as equal to, or better than, the reference in terms of image quality. The images were then ranked in order of E. Only one image that scored the same as the reference had a lower dose. The reference image had a mean E of 3.31μSv, the image that scored the same had an E of 1.8μSv. Conclusion: Against the current clinical standard exposure factors of 70kVp, 20mAs and the use of an anti- scatter grid, one image proved to have a lower E whilst maintaining the same level of image quality and lesion visibility. It is suggested that the new exposure factors should be 60kVp, 20mAs and still include the use of an anti-scatter grid.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
Este trabalho teve como objectivo o estudo de um sistema de levitação magnética com chumaceiras supercondutoras, para utilização numa fonte de alimentação de energia eléctrica ininterrupta, que usa um volante de inércia como sistema de armazenamento de energia. Partindo de um modelo comercial existente, foi modelizada a substituição do sistema de levitação por um sistema com chumaceiras supercondutoras. Foi feito o dimensionamento do magnete permanente e do supercondutor de forma a atingir-se a força de levitação magnética necessária para elevar o rotor da máquina, garantindo simultaneamente a máxima estabilidade do sistema. Os perfis de distribuição do campo magnético no volante de inércia foram modelizados recorrendo ao método dos elementos finitos, através da utilização do software Ansys. O cálculo da força de levitação foi efectuado recorrendo ao software MATHEMATICA.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
This letter reports on the magnetic properties of Ti(1-x)Co(x)O(2) anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play an important role in promoting long-range ferromagnetic order in the material studied in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO(2) anatase system.
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.
Resumo:
We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO2 thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 degrees C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with copper(II) nitrate, acetate or metaborate has led to the isomeric complexes [Cu-3(L)(2)(MeOH)(4)] (1), [Cu-3(L)(2)(MeOH)(2)]2MeOH (2) and [Cu-3(L)(2)(MeOH)(4)] (3), respectively, in which the ligand L exhibits dianionic (HL2-, in 1) or trianionic (L3-, in 2 and 3) pentadentate 1O,O,N:2N,O chelation modes. Complexes 1-3 were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography, electrochemical methods and variable-temperature magnetic susceptibility measurements, which indicated that the intratrimer antiferromagnetic coupling is strong in the three complexes and that there exists very weak ferromagnetic intermolecular interactions in 1 but weak antiferromagnetic intermolecular interactions in both 2 and 3. Electrochemical experiments showed that in complexes 1-3 the Cu-II ions can be reduced, in distinct steps, to Cu-I and Cu-0. All the complexes act as efficient catalyst precursors under mild conditions for the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, leading to overall yields (based on the alkane) of up to 31% (TON = 1.55x10(3)) after 6 h in the presence of pyrazinecarboxylic acid.
Resumo:
Cubic cobalt nitride films were grown onto different single crystalline substrates Al2O3 (0 0 0 1) and (1 1 View the MathML source 0), MgO (1 0 0) and (1 1 0) and TiO2 (1 0 0) and (1 1 0). The films display low atomic densities compared with the bulk material, are ferromagnetic and have metallic electrical conductivity. X-ray diffraction and X-ray absorption fine structure confirm the cubic structure of the films and with RBS results indicate that samples are not homogeneous at the microscopic scale, coexisting Co4+xN nitride with nitrogen rich regions. The magnetization of the films decreases with increase of the nitrogen content, variation that is shown to be due to the decrease of the cobalt density, and not to a decrease of the magnetic moment per cobalt ion. The films are crystalline with a nitrogen deficient stoichiometry and epitaxial with orientation determined by the substrate.
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.