7 resultados para Exposure Treatment
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.
Resumo:
Filamentous fungi from genus Aspergillus were previously detected in wastewater treatment plants (WWTP) as being Aspergillus flavus (A. flavus), an important toxigenic fungus producing aflatoxins. This study aimed to determine occupational exposure adverse effects due to fungal contamination produced by A. flavus complex in two Portuguese WWTP using conventional and molecular methodologies. Air samples from two WWTP were collected at 1 m height through impaction method. Surface samples were collected by swabbing surfaces of the same indoor sites. After counting A. flavus and identification, detection of aflatoxin production was ensured through inoculation of seven inoculates in coconut-milk agar. Plates were examined under long-wave ultraviolet (UV; 365 nm) illumination to search for the presence of fluorescence in the growing colonies. To apply molecular methods, air samples were also collected using the impinger method. Samples were collected and collection liquid was subsequently used for DNA extraction. Molecular identification of A. flavus was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR detection system (Corbett). Among the Aspergillus genus, the species that were more abundant in air samples from both WWTP were Aspergillus versicolor (38%), Aspergillus candidus (29.1%), and Aspergillus sydowii (12.7%). However, the most commonly species found on surfaces were A. flavus (47.3%), Aspergillus fumigatus (34.4%), and Aspergillus sydowii (10.8%). Aspergillus flavus isolates that were inoculated in coconut agar medium were not identified as toxigenic strains and were not detected by RT-PCR in any of the analyzed samples from both plants. Data in this study indicate the need for monitoring fungal contamination in this setting. Although toxigenic strains were not detected from A. flavus complex, one cannot disregard the eventual presence and potential toxicity of aflatoxins.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
The use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Cytostatics drugs are a heterogeneous group of chemicals widely used in the treatment of cancer, nevertheless have been proved to be also mutagens, carcinogens and teratogens. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Alkaline comet assay is one of the most promising short-term genotoxicity assays for human risk assessment, being recommended to monitor populations chronically exposed to genotoxic agents. DNA glycosylase (OGG1) represents the main mechanism of protecting the integrity of the human DNA with respect to 8-OHdG, the most well studied biomarker of oxidative damage.
Resumo:
Antioneoplastic drugs are widely used in treatment of cancer, and several studies suggest acute and long-term effects associated to antineoplastic drug exposures, namely associating workplace exposure with health effects. Cytokinesis blocked micronucleus (CBMN) assay is one promising short-term genotoxicity assays for human risk assessment and their combination is recommended to monitor populations chronically exposed to genotoxic agents. The aim of this investigation is the genotoxicity assessment in different professionals that handle cytostatics drugs. This research is case-control blinded study constituted by 46 non-exposed subjects and 44 workers that handle antineoplastic drugs, such as pharmacists, pharmacy technicians, and nurses. It was found statistically significant increases in the genotoxicity biomarkers in exposed comparising with controls (p<0.05). The findings address the need for regular biomonitoring of personnel occupationally exposed to these drugs, confirming to an enhanced health risk assessment.
Resumo:
Antineoplastic drugs are a heterogeneous group of chemicals used in the treatment of cancer, and have been proved by IARC to be mutagens, carcinogens and teratogens agents. In general, chemicals that interact directly with DNA by biding covalently or by intercalating, or indirectly by interfering with DNA synthesis, were among the first chemotherapeutics developed. Also, these drugs can induce reactive oxygen species that can lead to DNA damage and, consequently, mutations. These drugs are often used in combination to achieve synergistic effects on tumour cells resulting from their differing modes of action. However, most if not all of these chemical agents are generally nonselective and, along with tumour cells, normal cells may undergo cytotoxic/genotoxic damage. The in vivo exposure to antineoplastic drugs has been shown to induce different types of lesions in DNA, depending on the particular stage of cell cycle at the time of treatment. Besides the patients that use these drugs as a treatment, workers that handle and/or administer these drugs can be exposed to these substances; namely pharmacy, and nursing personnel in hospital context.
Resumo:
The permanent contact with cork may lead to constant exposure to fungi, raising awareness as a potential occupational hazard in the cork industry.The presence of fungi belonging to the Penicillium glabrum complex has been associated with the development of respiratory diseases such as suberosis, one of the most prevalent diseases among workers from cork industries, besides occupational asthma. Azoles are used as pesticides but also the first line therapy in the treatment of Aspergillus infections; azole-resistance as been described as to have also an environmental source and is considered an emerging public health problem.The aim of this work was to characterize fungal distribution and to evaluate the presence of azole-resistant Aspergillus isolates in nose swab samples from the cork industry workers.