3 resultados para Explosive sensitizers

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this research is to investigate the influence of explosive ratio and type of sensitizer on the quality of explosive welds between copper and aluminium alloy plates. The welds were performed on a partially overlapping joint configuration using an emulsion explosive (EE) with two different sensitizers, hollow glass microspheres (HGMS) and expanded polystyrene spheres (EPS). Welds with an improved surface were achieved by using the HGMS sensitizer. A higher wave amplitude was registered in welds produced with the EPS sensitizer. In turn, the dimension of the molten pockets was influenced by the explosive ratio, increasing in size with increases in the values of this parameter. The intermetallic content of these zones varied according to the sensitizer type. Unlike the CuAl2 phase, the Cu-richer phases CuAl and Cu9Al4 were only identified in welds performed using the EPS sensitizer. An increase in hardness was observed at the interface of all welds, which resulted from both the presence of intermetallic phases and the plastic deformation of the materials promoted by the impact. This effect was most evident on the aluminium alloy side. All the welds had a greater strength than copper, i.e. the weakest material of the joint. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two fluorescent molecular receptor based conjugated polymers were used in the detection of a nitroaliphatic liquid explosive (nitromethane) and an explosive taggant (2,3-dimethyl-2,3-dinitrobutane) in the vapor phase. Results have shown that thin films of both polymers display remarkably high sensitivity and selectivity toward these analytes. Very fast, reproducible, and reversible responses were found. The unique behavior of these supramolecular host systems is ascribed to cooperativity effects developed between the calix[4] arene hosts and the phenylene ethynylene-carbazolylene main chains. The calix[4]-arene hosts create a plethora of host-guest binding sites along the polymer backbone, either in their bowl-shaped cavities or between the outer walls of the cavity, to direct guests to the area of the transduction centers (main chain) at which favorable photoinduced electron transfer to the guest molecules occurs and leads to the observed fluorescence quenching. The high tridimensional porous nature of the polymers imparted by the bis-calixarene moieties concomitantly allows fast diffusion of guest molecules into the polymer thin films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.